MINUTES OF TWENTY THIRD MEETING OF "TECHNICAL COMMITTEE FOR IMPLEMENTATION OF FRAMEWORK ON RENEWABLES AT THE STATE LEVEL"

Venue :	:	Upper Ground Floor CERC, New Delhi
Date	:	11-01-2019
List of Participants	:	At Annexure –I (Enclosed)

- The Twenty-Third meeting of Standing Technical Committee was held on 11th January 2019. CERC/ FOR Chairperson, Shri P.K. Pujari chaired the Meeting. Dr. M.K Iyer, Member, CERC, welcomed all the members of the Committee and special invitees. Former Chairperson of the Committee, Shri A.S. Bakshi (former Member of CERC) also attended the meeting as special invitee.
- 2. Thereafter the agenda items were taken up for discussion:-
- 3. Discussions on the Agenda items

Agenda Item No. 1:Confirmation of Minutes of the 22nd TechnicalCommittee Meeting

The Technical Committee endorsed the minutes of the 22nd Technical Committee Meeting, held on 1st November 2018.

Agenda Item No. 2:Status of implementation of SAMAST andRegulations on Forecasting, Scheduling & Deviation Settlement

- Update by Consultant

- Update in respect of other States by respective Members

a. The Consultant (Idam Infra) made a presentation (**Annexure-II**) on the SAMAST implementation, Forecasting & Scheduling and DSM Regulations at State level for various States.

b. The Consultant updated on State-wise status on SAMAST DPR, F & S Regulations and DSM Regulations. It was highlighted that 14 States have submitted DPR for SAMAST implementation out of which 4 DPRs have been approved. Remaining 18 States are either still preparing their DPRs or have not started yet. The Committee suggested that POSOCO may expedite the process of approving DPRs through Monitoring Committee of PSDF.

c. Shri. K.V.S. Baba, CMD, POSOCO updated that a total of 19 DPRs have been submitted and the Appraisal Committee is finalizing the standard rates as well as rationalization of the meters to expedite the approval process. He also updated that these Standards would be finalized in the next NPC meeting and once approved the same would be communicated to the States.

d. Standing Technical Committee was told that several large States such as Uttar Pradesh, Uttarakhand, Jharkhand and Odisha have not yet started preparing DPR for SAMAST implementation. Dr. Iyer Suggested to have a special session with the States which have not prepared DPR for SAMAST implementation. He also suggested that the Committee meeting may be planned in these States.

e. Further, the Consultant highlighted that 21 States have come up with either Draft or Final Forecasting & Scheduling Regulations (5 Draft and 16 Final). While 8 States have notified the DSM Regulation and in 6 States, the DSM Regulations are at draft Stage. The Consultant also highlighted proposed revision in Model DSM Regulations in line with the 4th Amendment to CERC Regulations.

f. Joint Chief (RA), CERC suggested to have a full agenda on this item in the next meeting of the Committee to consider required revision in Model FOR DSM Regulations in view of the recent 4th Amendment in CERC DSM Regulations. He also suggested to include operational difficulties in implementation of DSM Regulations at State Levels.

g. The Consultant also pointed out that the existing Contract of the Consultant to support the Standing Technical Committee is valid only upto March 2019. The Committee recommended extension of the term of the Consultant for one more year.

Update in respect of other States by respective Members

Kerala: Chairperson KSERC provided updates on SAMAST and F&S Regulation for the State of Kerala. He highlighted that Kerala has already started the process of preparing DPR for SAMAST implementation. He also updated that the State has prepared the draft 'Kerala State Electricity Regulatory Commission (Forecasting, Scheduling, Deviation Settlement and Related Matters of Solar and Wind Generation Sources) Regulations, 2018,' based on the FOR Model Regulations. He also highlighted that the Regulations would be finalized based on the recommendation of the sub- group on issues of Aggregators/ QCA of the Standing Technical Committee.

Action points/ Decisions

- i. The Committee decided to have a seperate agenda item on DSM in next Technical Committee Meeting.
- ii. The Committee agreed to have special session with States which have not yet initiated action on SAMAST implementation such as Uttar Pradesh, Uttarakhand, Jharkhand and Odisha.
- iii. The Committee recommended extension of the term of the Consultant to support Technical Committee for one year more.
- iv. The Committee also requested the consultant to update on RPO webtool of the States.

Agenda Item No. 3: Grid Scale Storage: Economics, Regulation and the Future of Thermal Investments

a. Joint Chief (RA), CERC and Dr. Amol Phadke made presentations on primary findings of a joint study on Grid Scale Storage. (**Annexure-III**). This study is part of joint collaboration of FOR & LBNL under MoU between FOR and LBNL.

b. Dr. Amol Phadke of LBNL emphasized that with recent trend of decline in battery cost and low cost PPAs between battery storage providers and Utilities, the battery storage is becoming preferred and economical option in the US. He highlighted the recent development in the State of California where storage has replaced 3 California gas plants. He also mentioned that with increase in RE penetration in the grid, storage would soon become cost effective to meet shoulder demand in the system during evening peak.

c. According to him, by year 2025, the value of standalone storage could become competitive enough to replace thermal capacity addition. He estimated that with the help of storage technologies, India can save substantial capital investment by avoiding almost 58 GW of new coal capacity (assuming capex for battery ESS at \$100/kWh in 2025). However, he emphasized that battery storage needs initial push and support to achieve economies of scale and low prices.

d. JC(RA) stated that policy and regulatory intervention is required to promote storage. He highlighted the importance of mandate for adequacy requirement to assess seasonal and diurnal variation and corresponding least cost dependable power procurement plan. The Storage technology could play a significant role in assessment of adequacy requirement and providing Ancillary Service even at State level. He also suggested that regulatory intervention like

that in California may be explored to procure Ancillary Service by system operator for promotion of storage technology. He also suggested having a presentation by POSOCO on adequacy requirement in the next FOR Meeting since it has been one of the most discussed topics in the FOR.

e. TNERC Chairperson informed the situation of open access in the State of Tamil Nadu and the difficulties in tariff determination for the distribution utilities on behalf of open access consumers and CGPs. It was suggested that one dedicated meeting of the Standing Technical Committee may be organized to understand the issues around captive and open access consumers. It was also suggested that TNERC chairperson may present a study in this regard. During the discussion, it was highlighted that the future thermal capacity addition would be to assist the shoulder demand in the system and battery technology would be cost effective to meet this future shoulder demand.

Action points/ Decisions

•The Committee appreciated the joint study and suggested to go in detail to compare different storage options like pumped storage etc. to suggest cost effective options for system reliability.

Agenda Item No. 4: Australian Experience with respect to Distributed Energy Resources (DER)

a. MERC Member, Shri. Mukesh Khullar presented on the Australian experience with respect to Distributed Energy Resources (DERs) based on his recent study tour to Australia. (**Annexure –IV**). He highlighted recent development in Australia to manage grid reliability with increased penetration of asynchronous generation like solar and wind and lessons to learn for India.

b. He stated that DER aggregators are becoming reality in Australia in a big way and battery deployment for creating micro grids present unique opportunities to sustainably reach remote locations. He also informed that structural reform has been undertaken in Australia to create National Energy Market in which system operator does load forecasting and schedules power at 5-minutes time-block.

c. He pointed out that DERs have created several opportunities with democratization of generation, peer to peer trade, reduced network losses and implementation of blockchain technology. He also explained the concept of decentralized energy exchange (dex) to promote peer to peer electricity trading through DERs.

d. He also informed about the concept of making "Micro-grid Available As a Service" (MAAS), an initiative by Tech Mahindra of India to make quality power accessible to remote tribal hamlet/ hilly areas. He recommended that similar initiative may help to provide quality power to remote hamlets in India.

e. He also stressed on the need for real-time monitoring of the system security with high penetration of RE including DERs especially for RE rich States. He emphasized the need of registering DERs for real time monitoring of such disruptive technology and showed readiness on behalf MERC to undertake any study in this regard to understand the role of DERs.

Action points/ Decisions

•The Committee appreciated the presentation by the Member MERC and decided to invite Tech Mahindra in meeting of Standing Technical Committee for sharing the concept of MAAS.

Agenda Item No. 5:Status update on implementation of Pilot Study on5-Minute Scheduling, Metering, Accounting and Settlement; and FastResponse Ancillary Services (FRAS)

a. Shri S.R. Narasimhan, Director(POSOCO) presented the update on the two pilot studies (on 5-minute scheduling and FRAS) as directed by the CERC through its suo motu order dated 16th July 2018. (Annexure –V). POSOCO informed that for implementation of 5-minutes scheduling, procurement of metering is still in progress by CTU and the same would be in place in the next three (3) months or so. However, POSOCO informed that the pilot study on the implementation of FRAS has been implemented since 26th November 2018.

b. He highlighted that a meeting was organized with all stakeholders on 31st October 2018 to understand the complexities and to evolve a consensus for broad-based solutions, for implementation of FRAS. He informed that constraints provided by the hydro stations have been honoured and beneficiary schedules have not been disturbed for implementation of the pilot as directed. He highlighted the importance of pilot study to address frequency spike at hourly boundaries by participation of hydro projects in FRAS. He also informed that 20 hydro projects with total of 75 generating units are participating in the FRAS. He also informed that out of 20 hydro projects, 19 hydro projects have Francis Turbine with forbidden zone for operation and all such constraints collected from the hydro generators have been considered for implementation of the pilot project.

c. He also provided overview of information process to incorporate final schedule of FRAS and mentioned that total energy dispatched under FRAS has been squared off by the end of the day. He mentioned that during the first month of implementation of FRAS, instructions of maximum "Regulation UP" is 427 MW and maximum "Regulation DOWN" is 600 MW. Total mark-up for the hydro generators during the same period is around Rs. 4.6 lakh. He highlighted the challenges in implementation of the pilot project. He also stated that small residual energy are left during some days because some units are committed for some other use and he suggested compensating plant energy charge on D+ 1

to handle the same. He revealed that the initial result shows improvement in the frequency but also suggested a longer time period to assess the impact of FRAS on frequency improvement.

d. On key learning on the pilot, it was mentioned that initial results are very positive and few more months of experience would be helpful in enriching the experience on FRAS. On the pilot of 5-minutes scheduling, it was hoped that required metering would be in place soon and the same would be updated accordingly.

Action points/ Decisions

•The Committee noted the status update on FRAS implementation and suggested to expedite the implementation of 5 minutes scheduling, accounting and settlement and also recommended to continue the pilot for six months.

Agenda Item No. 6: Areas of Co-operation between Centre for Energy Regulation (CER) and SERCs

a. Dr. Anoop Singh made a presentation (Annexure –VI) and informed that Centre for Energy Regulation (CER) is an initiative by Department of Industrial and Management Engineering, IIT Kanpur which has been actively engaged in education, research, capacity building, consulting and policy advisory in the energy/ power sector. He further explained the objectives behind the CER which include enhanced regulatory-academia- utility interactions, develop knowledge base and database repository related to power sector for informed and evidence-based policy and regulatory decisions. He highlighted that CER has received seed funding under DFID of the United Kingdom and informed the Committee about the activities of the CER.

b. He also detailed different activities under CER covering Regulatory Research, Knowledge Database and Institutional Capacity Building.

c. On the list of ongoing activities, he mentioned that CER publishes quarterly newsletter on the development in the regulatory field and circulated a copy for information of members of the Committee. He informed that the newsletter tracks regulatory development across all states to provide regulatory information at one place. He also mentioned about online discussion forum of the CER and informed about one such discussion on offshore wind.

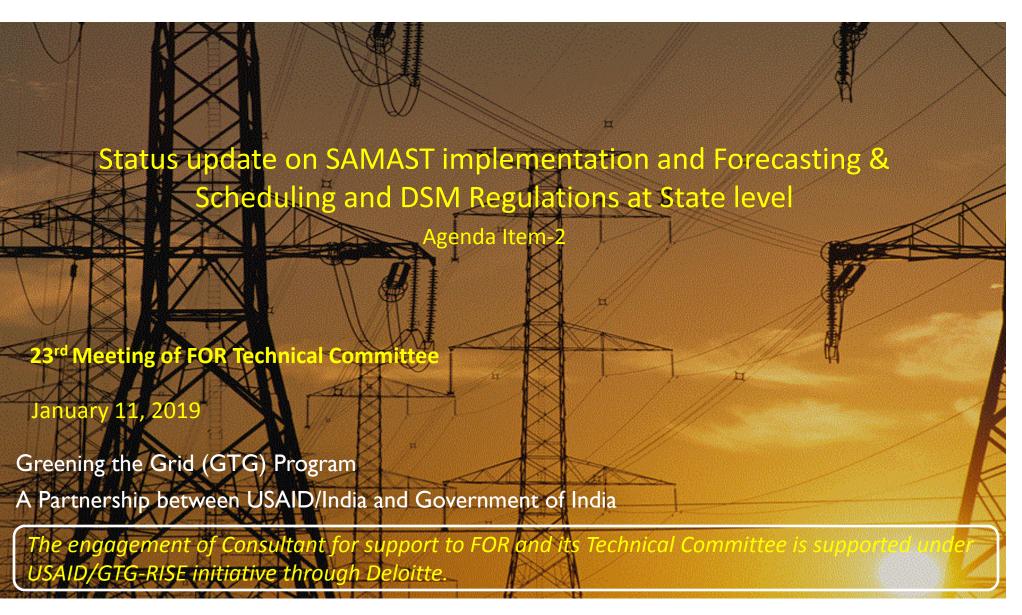
d. He also informed about the Regulatory Research Camp organized by the CER for representatives of different Regulatory Commissions, Utilities and academia on long term demand forecasting and power procurement planning.

e. He mentioned about the MoU signed with Florence School of Regulation (FSR), Florence, Italy and common symposium organized in October 2018.

f. On the issue of potential area of cooperation, he stated that these may be activities around creating Regulatory database in public domain and on benchmarking. He proposed Regulatory Officers in Residence (ROIR) program in which regulatory officers can spend about 3-5 days at CER. He also requested members to nominate officers for ROIR program which according to him would help in capacity building of Regulatory officers on a continuous basis.

g. The Member MERC mentioned about the institute of policy research and recent initiative taken by MERC to estimate agriculture consumptions. He also volunteered to nominate some regulatory officers for Regulatory Research camp as a pilot which can be replicated with other SERCs later.

Action points/ Decisions


- The Committee noted the presentation and it was agreed that the framework of Regulatory Officers in Residence program (ROIR) and Regulatory Research Camp should be gainfully utilized by the Regulatory Commissions.
- 5. JC(RA) extended vote of thanks to all participants and special invitees for enriching discussions on the agenda items.

LIST OF PARTICIPANTS AT THE TWENTY THIRD MEETING OF TECHNICAL COMMITTEE FOR IMPLEMENTATION OF FRAMEWORK ON RENEWABLES AT THE STATE LEVEL HELD ON $11^{\rm TH}$ JANUARY 2019 AT CERC, NEW DELHI

1	Sh. P.K. Pujari, Chairperson	CERC
2	Sh. Akshaya Kumar, Chairperson	TNERC
3	Sh. Preman Dinraj, Chairperson	KSERC
4	Dr. M.K. lyer, Member	CERC
5	Sh. A.S. Bakshi, Former Member	CERC
6	Sh. P.J. Thakkar, Member	GERC
7	Sh, Mukesh Khullar, Member	MERC
8	Sh. H.M. Manjunatha, Member	KERC
9	Sh. Sanoj Kumar Jha, Secretary	CERC
10	Sh. S.C. Shrivastava, Chief (Engg.)	CERC
11	Sh. S.K. Chatterjee, Joint Chief (RA)	CERC
12	Sh. K.V.S. Baba, CMD	POSOCO
13	Sh. S.K. Soonee, Advisor	POSOCO
14	Sh. Ramakantha, Consultant (Technical)	KERC
15	Sh. S.R. Narasimhan, Director (SO)	POSOCO
16	Dr. Anoop Singh, Associate Professor	IIT Kanpur
17	Ms. Rashmi Nair, Deputy Chief (RA)	CERC
18	Sh. Ajit Pandit, Director	IDAM
19	Sh. Anupam Kumar, Manager	POSOCO
20	Sh. Nilesh Singh	IDAM
21	Sh. Amul Phadke	LBNL
22	Sh. Ravindra Kadam, Advisor (RE)	CERC
23	Sh. D. Rajagopal	LBNL
24	Sh. Arun Kumar, Assistant Secretary	FOR
25	Sh. Neeraj Singh Gautam, Research Officer	CERC
26	Sh. Tanay Tarany, Research Associate	FOR

Content

State wise update of SAMAST Implementation, F&S Regulations and DSM Regulations

- Region wise Summary
- North Region
- West Region
- South Region
- East Region
- North-East Region
- Proposed Revisions in Model DSM Regulations in line with 4th Amendment to CERC DSM Regulations

Status Update of State Specific Activities

- Region wise Summary
- North Region
- West Region
- South Region
- East Region
- North-East Region

Summary of status SAMAST, F&S and

DSM Regulations (as on Jan 2019)

States	/s	SAMAST D	PR	F	&S Regulation	ns	Í DS	SM Regulat	ions
Region	DPR Submitted	DPR approved	Yet to Prepare (or WIP)	Notified	Draft Published	Yet to initiate regulatory process		Draft Published	Yet to initiate (or WIP)
North	3 HP, HR & PB	1 RJ	4 UK, UP, J&K, DL	3 RJ, UP, UK	2 HR, PB	3 DL, J&K, HP	4 HP, DL,RJ, UK		4 J&J, PB, UP, HR* *Draft prepared
West	1 MP	-	4 GJ, MH, CG, Goa	3 CG, MP, MH	1 GJ	1 Goa	3 GJ, CG, MP	1 MH	1 Goa
South	2 KA, TS	2 AP, TN	1 KL	3 AP, KR, TS	1 TN	1 KL		1 TN	4 AP, KR, TS* KL * Draft prepared
East	1 BR	1 WB	3 JH, OR, SK	2 JH, SK	1 OR	2 BR, WB		2 WB, OR	3 JH, SK, BR
North-East	7 AR, AS, MN, ML, MZ,NL, TR			5 AS, MN, ML, MZ,TR		2 AR,NL	1 ML	2 AS, TR	4 AR, MN, MZ,NL
UT			6 CH, PY, DD, DNH, LD, AN			6 CH, PY, DD, DNH, LD, AN			6 CH, PY, DD, DNH, LD, AN
TOTAL	14	4	18	16	5	15	8	6	22

Regulations (as on Jan 2019)

States	SAMAST	F&S Regulations	DSM Regulations		
	North	ern Region			
Chandigarh	Intrastate entities identifiedNo. of interface points identified	• Yet to be initiated	• Yet to be initiated		
Delhi	 Delhi Transco Ltd. has initiated SAMAST implantation in the State on 6th December, 2017 	 Yet to be initiated 	 ABT mechanism is implemented from April, 2007 in line with CERC UI framework. 		
Haryana	 DPR Submitted to PSDF (21 Mar, 2018). PSDF Queries addressed (Sept, 2018) under scrutiny by PSDF committee 	 (17th Jan, 2018) SOR submitted by consultant(June,18) 2nd Public 	 Draft prepared and submitted by consultant on (Aug, 2018) HERC is reviewing the Draft for public consultation 		
Himachal Pradesh	 Revised DPR Submitted to PSDF (8th Oct, 2018) under scrutiny by PSDF committee 	 Not initiated (No major Wind and Solar Resources in the state) 	 Notified (16th Oct, 2018) in line with FOR Model and CERC DSM Regulations. 		
Jammu & Kashmir	Intrastate entities identifiedNo. of interface points identified	• Yet to be initiated	• Yet to be initiated		

Regulations (as on Jan 2019)

States	SAMAST	F&S Regulations	DSM Regulations		
	No	rthern Region			
Punjab	 DPR Submitted to PSDF (19 Nov, 2018) 	 Draft published (June, 2018) SOR by consultant(July,18) Public hearing on 9th Sept, 2018 SOR by Consultant(20 Oct18 and 15 Dec, 2018) 	• Yet to be initiated		
Rajasthan	 SAMAST implantation initiated in the State. DPR submitted to PSDF of INR 13.54 Crs. 29 Aug2016 DPR approved by PSDF Committee May,2017(INR11.86 Crs.) 84% of work completed by RVPN 	line with Model F&S Regulations.	 Notified (08th Nov, 2017) Draft Amendment to DSM Regulations published on 3rd Jan2019 in line with 4th Amendment to CERC DSM Regulations Comments upto 24th Jan 2019 		
Uttar Pradesh	Intrastate entities identifiedNo. of interface points identified	 Notified (12th Dec, 2018) in line with Model F&S Regulations 	 Yet to be initiated 		
Uttarakhand	Intrastate entities identifiedNo. of interface points identified	 No separate F&S Regulation for RE generators. Scheduling in mandatory under DSM Regulations 	 Notified (6 Feb, 2017) in line with FOR model DSM Regulations 		

DSM Regulations (as on Jan 2019)

States	SAMAST	F&S Regulations	DSM Regulations
	N	Vestern Region	
Chhattisgarh	 Implementation initiated on 3 No 2016 	lov, • Notified (7 th Nov, 2016) • under DSM Regulation	 Notified (7th Nov, 2016) in line with CERC DSM Regulations
Daman & Diu	Intrastate entities identifiedNo. of interface points identified	• Yet to be initiated •	• Yet to be initiated
D.N Haveli	Intrastate entities identifiedNo. of interface points identified	• Yet to be initiated •	• Yet to be initiated
Goa	Not Initiated	• Yet to be initiated	• Yet to be initiated
Gujarat	 Implementation initiated (30 Jul 2018) 	 Draft (13th Jan, 2017) SOR Preparation in progress 	 DSM mechanism implemented in line with CERC DSM Regulations (17 Feb 2014)
Madhya Pradesh	 Implementation (Oct, 2018). DPR submitted for 5 Min ABT meters at existing interface point (INR 6.68 Cr) DPR under scrutiny. 	 Notified (20th April, 2018) in line with FOR Model Regulations 	• Notified (18 Sept, 2015) in line with CERC DSM Regulations
Maharashtra	 Implementation initiated (13 Oc 2017 	 Notified (20th July 2018) inline with Model F&S Regulations. F&S Procedure approved by MERC (7 Dec, 2018) 	 ABT mechanism (2007)- FBSM Draft DSM Regulations published on 23 Oct, 2018. Finalisation of DSM Regulations in progress. In line with Model DSM and CERC DSM Regulations.

Regulations (as on Jan 2019)

GOVERNMENT OF INDIA

States	SAMAST	F&S Regulations	DSM Regulations		
	So	outhern Region			
Andhra Pradesh	 DPR Submitted (6 Apr,17) for INR 52.72 Crs DPR approved (2 May,18) for INR 19.36 Crs. 	 Notified (21 Aug, 2017) in line with Model F&S Regulations. Implementation initiated 	 Balancing and Settlement Code implemented as on 11 Aug, 2006 for OA only. 		
Karnataka	 DPR Submitted (22 Dec, 2017) INR 43.34 Crs Under scrutiny 	 Notified (31 May, 2016) Implementation from 1st June 2017. 	 ABT mechanism implemented from 20 June, 2006 for OA only 		
Kerala	 Implementation initiated 	 Draft under preparation 	Yet to be initiated		
Tamil Nadu	 DPR approved INR 11.98 Crs Implementation initiated on 17 July, 2018 	 Draft published (28th Dec, 2017). SOR submitted May, 2018. Revised Draft and clarifications submitted to the TNERC on 24 Dec, 2018 	 Draft published (28th Dec, 2017). SOR submitted (June, 2018) Clarification and revised Draft submitted in Nov, 2018 		
Telangana	 DPR Submitted (11 Oct, 2017) INR 84.64 Crs Under scrutiny 	 Notified (30th May, 2018) F&S Procedure submitted to the TSERC by TSSLDC in Dec, 2018 	 Draft submitted to TSERC by consultant (Aug, 2018) Revised draft in line with CERC DSM Amendment submitted to TSERC (15 Dec18) 		
Puducherry	Status not available	Yet to be initiated	Yet to be initiated		

Regulations (as on Jan 2019)

States	SAMAST	F&S Regulations	DSM Regulations							
	Eastern Region									
Bihar	 DPR Submitted (27th Feb, 2018) INR 93.76 Crs. Under scrutiny 	 Regulatory Process initiated by the Commission 	 Regulatory Process initiated by the Commission 							
Jharkhand	No information available	• Notified (28 th Sept, 2016)	 Balancing and settlement mechanism for OA (28 Jan, 2010) 							
Orissa	 Implementation initiated (5 Dec, 2017) DPR yet to submitted. 	 Draft Published on 23 Sept, 2015 under DSM Regulations 	 Draft published (23rd Sept, 2015) 							
West Bengal	 DPR Submitted (22nd Dec, 2017) INR 25.96 Crs DPR Approved in Aug, 2018 	• Yet to be initiated	 Draft balancing and settlement code published (23rd Feb, 2017) 							
Sikkim	Status not available	• Notified (19 th April,2018)	Yet to initiated							

Regulations (as on Jan 2019)

GOVERNMENT OF INDIA MINISTRY OF POWER

States	SAMAST	F&S Regulations	DSM Regulations		
	North-East	tern Region			
Arunachal Pradesh	 DPR submitted (30 May, 2018) for INR 13.43 Crs Under-scrutiny, queries responded 	• Yet to be initiated	• Yet to be initiated		
Assam	 DPR submitted (30 May, 2018) for INR 18.53 Crs Under-scrutiny, queries responded 	• Notified (6 th Sept 2018)	 Draft Published (2Nov 2018) SOR under preparation 		
Manipur	 DPR submitted (23 April, 2018) for INR 24.60 Crs Under-scrutiny, queries responded 	• Notified (9 th Aug 2016)	• Yet to be initiated		
Meghalaya	 DPR submitted (31 May, 2018) for INR 18.77 Crs Under-scrutiny, queries responded 		• Notified (5 th Nov 2018)		
Mizoram	 DPR submitted (30 May, 2018) for INR 18.26 Crs Under-scrutiny, queries responded 	• Notified (9 th Aug 2016)	• Yet to be initiated		
Nagaland	 DPR submitted (30 May, 2018) for INR 18.72 Crs Under-scrutiny, queries responded 	• Yet to be initiated	• Yet to be initiated		
Tripura	 DPR submitted (4 June, 2018) for INR 15.12 Crs Under-scrutiny, queries responded 	• Notified (18 Nov 2016)	 Draft published (20th July 2016) 		

Proposed Revisions in Model DSM Regulations in line with 4th Amendment to CERC DSM Regulations

Proposed Revisions in Model DSM Regulations in line with 4th Amendment to CERC DSM Regulations (1/2)

Parameters	CERC 4 th Amendment, 2018	Model DSM Regulations, 2017	Proposed revision in Model DSM Regulations
Additional Definitions	 Introduction of Definition of Area Clearing Price (ACP), Day Ahead Market (DAM) Revision of def. of Time-block 	No Provision	 Definitions of ACP and DAM to be Incorporated
Frequency Band	• 49.85 Hz to 50.05Hz	• 49.70 Hz to 50.05 Hz	• To be revised to 49.85 Hz to 50.05Hz
Charges for Deviation and DSM Price Vector	 Dynamic slope by joining the price points at 50 Hz. (daily simple average ACP), charges at 49.85 Hz (Rs. 8/kWh) and 50.05 Hz (zero) on a daily basis. Cap rate for the charges for deviation for the generating stns. whose tariff is determined by the Commission shall be equal to its energy charges as billed for the previous month. 		Amendment to CERC DSM Regulations
Cap Rate	• Rs.8.00/kWh	• Rs.8.24/kWh	 Proposed to revise to Rs.8.00/kWh

Proposed Revisions in Model DSM Regulations in line with 4th Amendment to CERC DSM Regulations (2/2)

GOVERNMENT OF INDIA

Parameters	CERC 4 th Amendment, 2018	Model DSM Regulations, 2017	Proposed revision in Model DSM Regulations
Limits on Deviation volume & Consequences of crossing limits	 Additional Proviso: Total deviation from schedule in energy terms during a day shall not be in excess of 3% of the total schedule for the drawee entities and 1% for the generators and additional charge of 20% of the daily base DSM payable / receivable shall be applicable in case of said violation . (applicability of above clause within 1 year – by separate notification) 	• No such provision	 May be adopted by SERCs at the later stage of implementation of DSM Regulations in the State.
Provision of Change in Sign (Zero Crossing)	 Provision of Sign Change once within 12 time blocks is revised to once within 6 time blocks . Violation shall attract, Additional Charges of 20% on daily base DSM payable as against 10% 	 Sign Change, at least once, after every 6 time blocks. Violation shall attract, Additional Charges of 10% of Deviation Charges payable. 	 In line with 4th Amendment to CERC DSM Regulations.
Annexure 1	 Cap Rate being equivalent to the energy charges as billed for the previous month 	 The Additional Charge for DeviationCap Rate for Deviations of 303.04 Paise /kWh 	 In line with 4th Amendment to CERC DSM Regulations.

GOVERNMENT OF INDIA

- RISE Contracting Officer Representative: Monali Zeya Hazra, USAID India, mhazra@usaid.gov
- Chief of Party: Shubhranshu Patnaik, RISE, spatnaik@deloitte.com

Grid scale storage: Economics, regulation, and the future of thermal investments

Dr. Amol Phadke (LBNL) & Dr. Sushanta K Chattarjee (CERC) FOR Technical Committee Meeting Jan 11, 2019

Major research inputs from Dr. Nikit Abhyankar & Shruti Deorah, LBNL

Introduction to Lawrence Berkeley National Laboratory

Managed by the University of California for the United States Department of Energy

- Dedicated to solving the most pressing scientific problems facing humankind
 - Basic science for a secure energy future
 - Science of living systems to improve the environment and energy supply
 - Understanding and control of matter and energy in the universe
 - Translation to applied energy programs
- Build and safely operate world-class scientific facilities
- Train the next generation of scientists and engineers

13 — Nobel Prizes
13 — National Medal of
Science recipients
4,200 — Employees
200 — Site acreage

Outline

- 1. Large grid scale storage projects: Highlights of recent developments in the US
- 2. Grid scale storage in India: Need-value, costs, and timelines
- 3. Storage policy-regulation and and future strategy

1. Large grid scale storage projects: Highlights of recent developments in the US

BRIEF

AUTHOR

Gavin Bade

@GavinBade

PUBLISHED

Nov. 9, 2018

SHARE IT

in

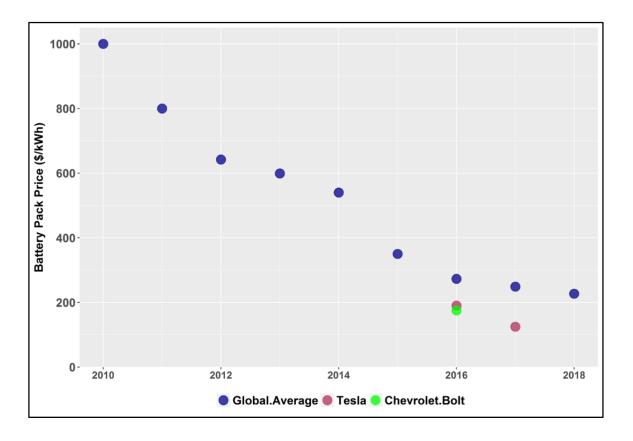
POST

Storage will replace 3 California gas plants as PG&E nabs approval for world's largest batteries

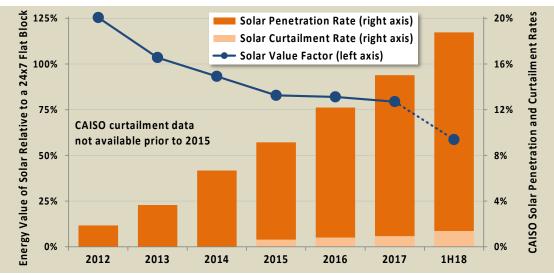
Elon Musk: I can fix South Australia power network in 100 days or it's free

The Tesla founder says he can build a 100MW battery storage farm within 100 days or provide the system free of charge

▲ Elon Musk has weighed into the South Australia energy debate by issuing a challenge to the state's government. Photograph: Shannon Stapleton/Reuters


By McKinley Corbley - Dec 11, 2018

Dive Brief:


- The California Public Utilities Commission on Thursday <u>approved four energy</u> <u>storage projects</u> for Pacific Gas & Electric (PG&E) to replace retiring gas generators, including two batteries that would be the largest in the world.
- The CPUC granted approval for a total of 567.5 MW / 2,270 MWh of storage, including a 300 MW / 1,200 MWh project from Vistra Energy and a 182.5 MW / 730 MWh project from Tesla that the utility would own. Those batteries, once completed, would be the two largest in service.
- The CPUC directed PG&E to purchase the storage in January instead of approving new ratepayer-funded contracts for three gas plants in PG&E's service area.
 Analysts told Utility Dive the cost of the batteries is likely cheaper than continuing to operate the plants.

Tesla's Record-Breaking Mega Battery, Installed on a Bet, Saves Australia \$40 Million in Its First Year

Drivers of grid scale battery storage: 1. Dramatically declining battery prices 2. Increasing need due to RE & uncertain load 3. Storage mandate

Battery prices have dropped more than 80% since 2010 and are projected to decline further Source: BNEF, 2018 & LBNL

- To mitigate the declining value of solar to the power system – duck curve: enable peak shaving with solar
- Cheaper way to meet/address system reliability; ancillary services; transmission constraints
- Fast deployment option to deal with demand uncertainty

Several solar + storage PPAs being signed to restore the declining value of solar

	Project		Actual or Expected COD	Capacity (MW-AC)		Battery Storage		Battery:PV Capacity	% of PV MWh used	Levelized PPA Price	
State	Name	Sponsor	Offtaker	(PV/Battery)	PV	Battery	Hours	MWh	Ratio	to charge	(2017 \$/MWh)
HI	Kapaia	Tesla	KIUC	Apr-17	13	13	4.0	52	100%	85%	117.7
FL	Babcock	NextEra	FPL	Dec-16/Mar-18	74.5	10	4.0	40	13%	9%	N/A
FL	Citrus	NextEra	FPL	Dec-16/Mar-18	74.5	4	4.0	16	5%	4%	N/A
AZ	Pinal Central	NextEra	SRP	Apr-18	20	10	4.0	40	50%	25%	67.7
HI	Lawai	AES	KIUC	Oct-18	20	20	5.0	100	100%	71%	87.8
TX	Castle Gap	Luminant	Luminant	Jun-18/Dec-18	180	10	4.2	42	6%	3%	N/A
HI	West Loch	HECO	HECO	Dec-18	20	20	4.0	80	100%	67%	N/A
MN	Ramsey/Athens	Engie/NextEra	Connexus	Dec-18	10	15	2.0	30	150%	57%	?
HI	Molokai	MNEP	MECO	Jun-19	4.88	3	5.0	15	61%	43%	140.0
HI	Kekaha	AES	KIUC	Sep-19	14	14	5.0	70	100%	77%	84.0
AZ	Wilmot	NextEra	TEP	Dec-19	100	30	4.0	120	30%	15%	40.0
CA	Desert Harvest II	EDF-RE	SCPPA	Dec-20	70	35	4.0	140	50%	24%	LMP (+\$15.25)
AZ	Redhawk(?)	First Solar	APS	Jun-21	65	50	2.7	135	77%	26%	?
NV	Battle Mountain	Cypress Creek	NV Energy	Jun-21	101	25	4.0	100	25%	12%	22.8
NV	Dodge Flat	NextEra	NV Energy	Dec-21	200	50	4.0	200	25%	13%	23.5
NV	Fish Springs Ranch	NextEra	NV Energy	Dec-21	100	25	4.0	100	25%	13%	26.4

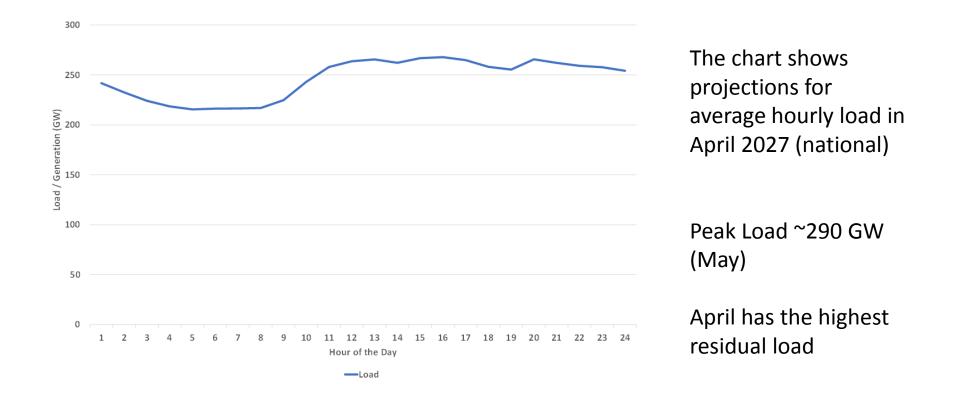
Solar + 4 hour storage at 25% peak capacity ~ Rs 2/kWh for 2021 delivery

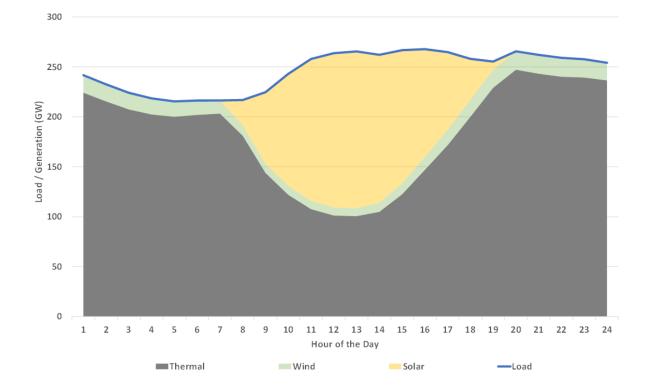
Source: Bolinger et. al 2018, LBNL

Aggressive bidding with several projects and bids: Xcel utility solicitation 87 bids, 69 projects, 16 GW capacity RFP Responses by Technology

Modian Rid

				iviedian Bid			
	# of		# of	Project	Price or	Pricing	
Generation Technology	Bids	Bid MW	Projects	MW	Equivalent	Units	
Combustion Turbine/IC Engines	30	7,141	13	2,466	\$ 4.80	\$/kW-mo	
Combustion Turbine with Battery Storage	7	804	3	476	6.20	\$/kW-mo	
Gas-Fired Combined Cycles	2	451	2	451		\$/kW-mo	
Stand-alone Battery Storage	28	2,143	21	1,614	11.30	\$/kW-mo	
Compressed Air Energy Storage	1	317	1	317		\$/kW-mo	
Wind	96	42,278	42	17,380	\$ 18.10	\$/MWh	
Wind and Solar	5	2,612	4	2,162	19.90	\$/MWh	
Wind with Battery Storage	11	5,700	8	5,097	21.00	\$/MWh	
Solar (PV)	152	29,710	75	13,435	29.50	\$/MWh	
Wind and Solar and Battery Storage	7	4,048	7	4,048	30.60	Ş/MWh	
Solar (PV) with Battery Storage	87	16,725	59	10,813	36.00	\$/ <i>/</i> /Wh	
IC Engine with Solar	1	5	1	5		\$/MWh	
Waste Heat	2	21	1	11		\$/MWh	
Biomass	1	9	1	9		\$/MWh	
Total	430	111,963	238	58,283			

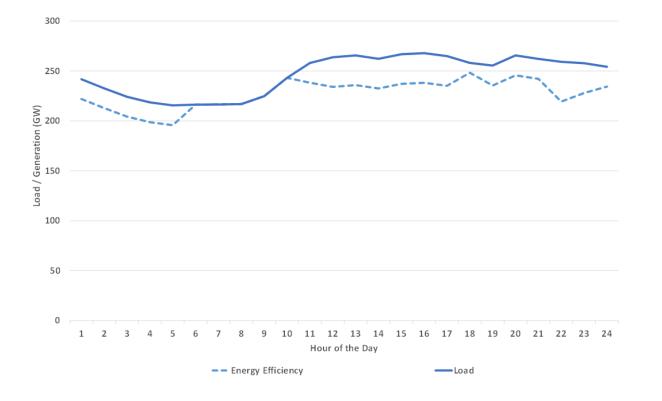

Solar + storage median bid price ~ Rs 3/kWh (adjusted for 30% ITC subsidy)for higher capacity storage


2. Grid scale storage in India:

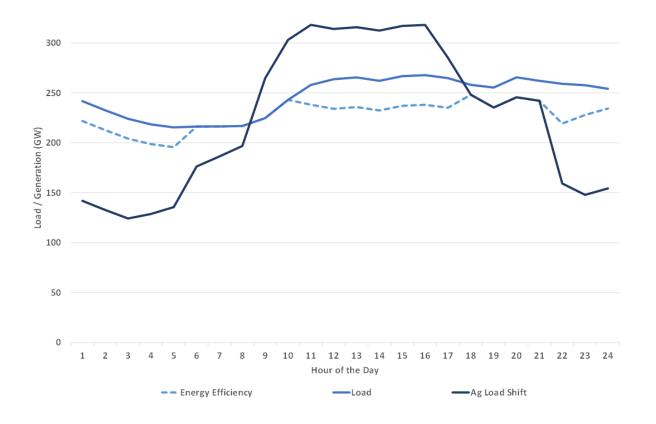
- Need/value
- Costs
- Timelines

Need/value of grid scale battery storage in India

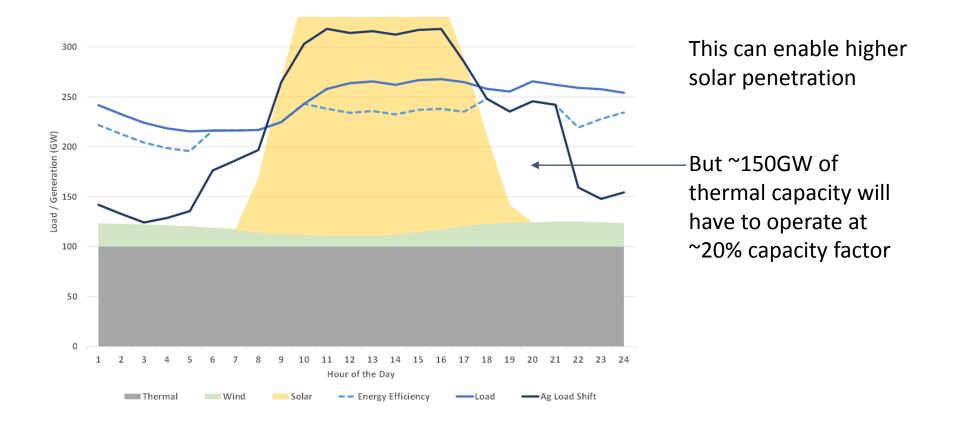
- 1. Effective alternative to thermal to meet shoulder demand
- 2. Solar + storage as a short lead-time and modular option to deal with inherent uncertainty in demand
- 3. Grid reliability ancillary services transmission congestion
- 4. Learning and future cost reduction



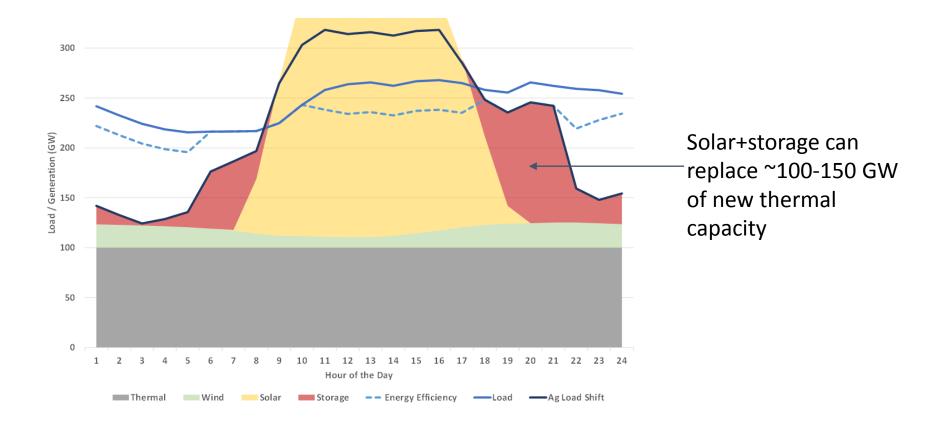
Current plans include installing ~275 GW of RE by 2027


RE generation during evening peak is small

⇒ Peak thermal
 capacity requirement
 = ~250 GW



Let's look at an alternative scenario.


Appliance energy efficiency can avoid significant load during evening peak and night

Shifting of agricultural load to day-time can reduce the night-time load by ~60-80 GW (in peak months) - with corresponding increase in the daytime load Future of thermal capacity needs to be assessed carefully

Future of thermal capacity needs to be assessed carefully

ESTIMATING THE COST OF GRID LI-ION STORAGE FOR INDIA

• The cost ratios from Solar PV analysis are applied to BoS, installation and soft costs of a battery ESS in the US*:

		U	S	INDIA	
Stand alone storage	Units	2020	2025	2020	2025
Discharge	hours	6	6	6	6
Power	MW	1	1	1	1
Battery pack	\$/kWh	130	88	130	88
BoS hardware	\$/kWh	24	14	12	7
Soft Costs	\$/kWh	10	5	3	2
EPC	\$/kWh	13	9	5	4
Сарех	\$/kWh	177	115	150	100
Capex	\$/kW	1060	691	901	597

LEVELIZED COST OF STORAGE (LCOS) at scale by 2025

- Capital cost of \$100/kWh in 2025 is then translated to LCOS with the following assumptions:
- Life of battery : 10 yrs
- Depth of discharge : 90%
- Residual project value : 10%
- Annual degradation : 1%
- # of cycles per year : 365
- Levelized Cost of Storage (Rs./kWh)
- Fixed Cost 3.22
- Variable Cost 0.22
- Total Cost 3.46

If we assume 30% of battery capacity required vis-à-vis renewable generation, tariff adder would be ~ Rs.1.04/kWh

CAPITAL COST SAVINGS WITH STORAGE IN 2025

 Assuming capex for Battery ESS at \$100/kWh in 2025, India can save over INR 60,000 crores in capital investment by avoiding 58 GW of new coal capacity.

* Assuming Capex for new coal constant at Rs. 6.5 Crores/MW in 2018 Rs & Exchange Rate of Rs 70/USD.

Potential Capex Savings by avoiding new coal capacity				
Capex for Storage (20				
~100	\$/kWh	2025 estimate is used as build out over time		
45.35	\$ Billion	For 458 GWh of BESS		
317,443	Rs. crores	@Exch Rate Rs 70/USD		
Capex for Coal				
6.5	Rs crores/MW	Assumed constant at 2018 Rupees		
378,027	Rs. crores	For 58 GW coal capacity avoided		
Savings in capex				
60,585	Rs. crores	Additional savings in variable costs TBD		

3. Storage strategy, pathway, and policyregulation

Big picture

- If low cost storage/ solar + storage (~ Rs 3-4/kWh) is realized in India it provides
 - Effective alternative for peak-intermediate load power which is challenging to do with coal
 - Viable alternative fast response ancillary service
 - Fast deployment alternative to deal with uncertain demand that leads to shortage or overcapacity
- Timeline having this option well proved in next 2-3 years provides another option in the next investment cycle to meet incremental demand of 50 GW from 2022-27
- Initial push and support is required to achieve economies of scale and low prices
- Finding areas where storage can solve todays problems with view of potentially much greater role in the future is needed – Time shifting, Ancillary Services, etc

Policy and regulatory options for deployment

- Adequacy requirement mandate
 - Time of day/Seasonal demand assessment and corresponding least cost dependable power procurement plan
 - Valuing storage and providing guidelines for procurement
 - Storage mandate (CA requires utilities to procure 5 GWh of storage capacity by 2020)
- Reserves requirement assessment Exploring alternatives (including storage as an option) for replacement of high cost 'Reliability must run' resources (refer to CA experience) – Need for cost benefit analysis.
- Rewarding fast response through ancillary services market enabling all resources including storage to compete for this segment. (Can/Should the system operators be asked to procure part of such services requirement?)
- Fiscal incentives

Thank You

aaphadke@lbl.gov

•sushanta_chat@yahoo.com

Distributed Energy Resources

Key Learnings from Australia

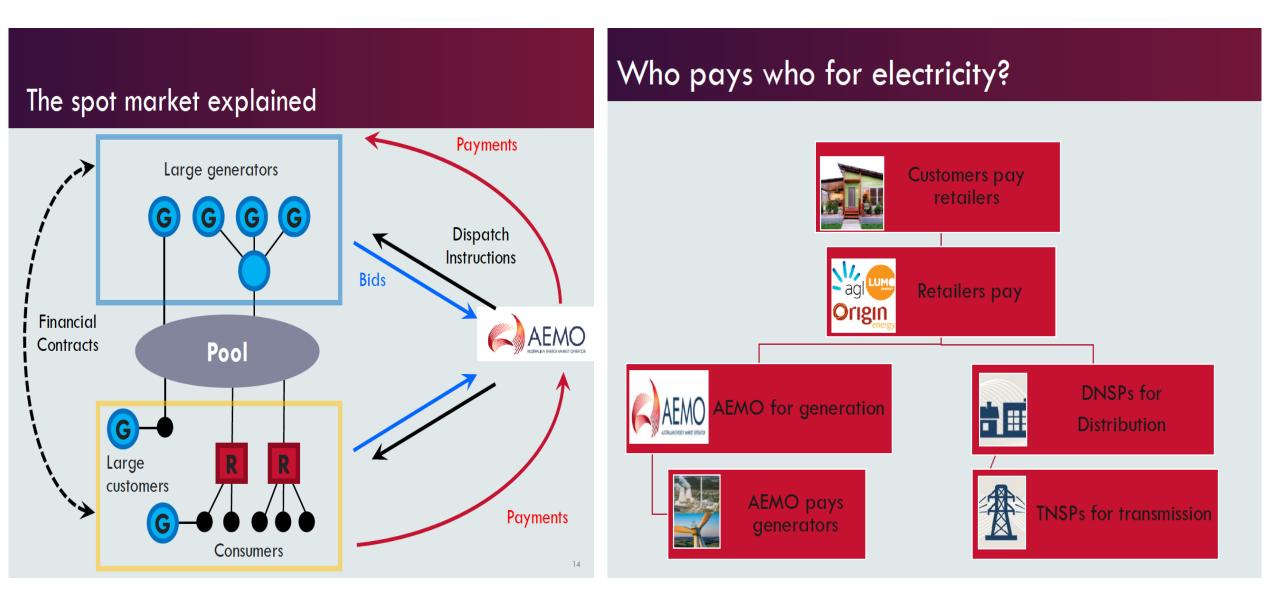
IEX study tour 10th to 15th February to Sydney and Melbourne

Mukesh Khullar Member, MERC

Context

- **Solar roof-top** promotion through net metering or net billing causing losses for utilities
 - DER aggregators in Australia
- **Battery** deployment for creating **micro grids** present unique opportunities to sustainably reach remote locations
 - 'Microgrid as a service' available with *Power Ledger* in Australia
- Due consideration of increased penetration of asynchronous generation on **system security**
 - RE rich SA system blackout experience of 28 Sep 2016
 - 'New Rules for System Security Market Framework' by AEMO

Structural reforms - 2011

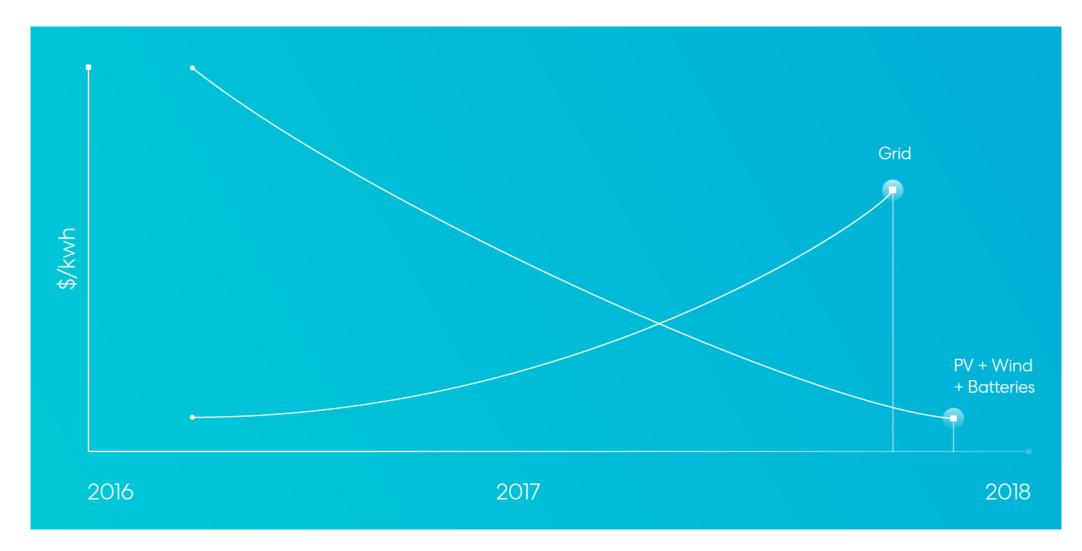

Unique aspects of Australian Electricity Market

Creation of National Energy Market

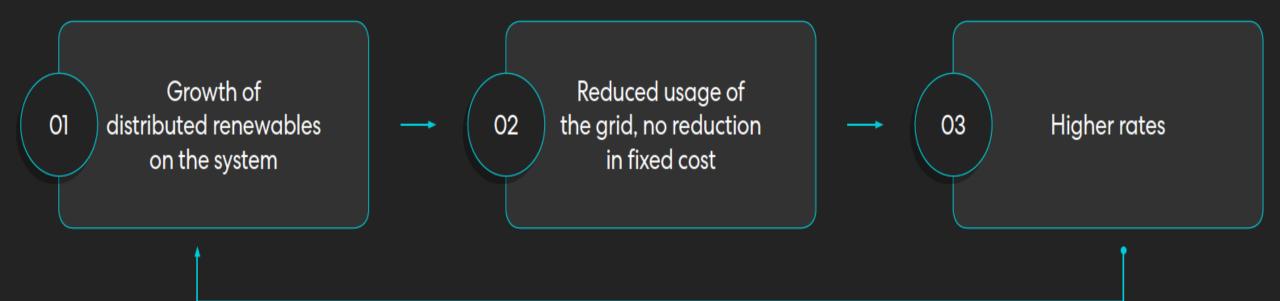
- Energy only market, no capacity market
- Load forecasting done by system operator and not by DLs or retailers
- Only generators bid a day ahead for supply of energy in 5 minutes time slots
- Market operations for AES by the system operator
- Retailers have economic 'contracts for difference' between PPA and market rates
- Retailers fix tariff
 - Gas and Electricity retailed together

- Division of Governance structure
 - Energy Commission rule making body
 - System and Market operator Gross pooling of energy; system operations
 - Energy Regulator compliance by enforcement, regulation, monitoring
 - Essential Services Commission licensing of utilities, feed in tariff of RE, ARR for distributors and transmitters, energy efficiency targets, Ombudsmen

No common grid across country. WA is separate; NT no grid SA has very high RE penetration 25 %


Dispatches subject to constraints

• Thermal constraints, Frequency control, Generation ramping, Voltage stability etc.


Issues relating to DER

- Death spiral for utilities
- Asynchronous generation
 - Volatility and grid instability
- Inefficient deployment: High cost, wasted resource
- Forecasting: Accuracy and viability for individual DER

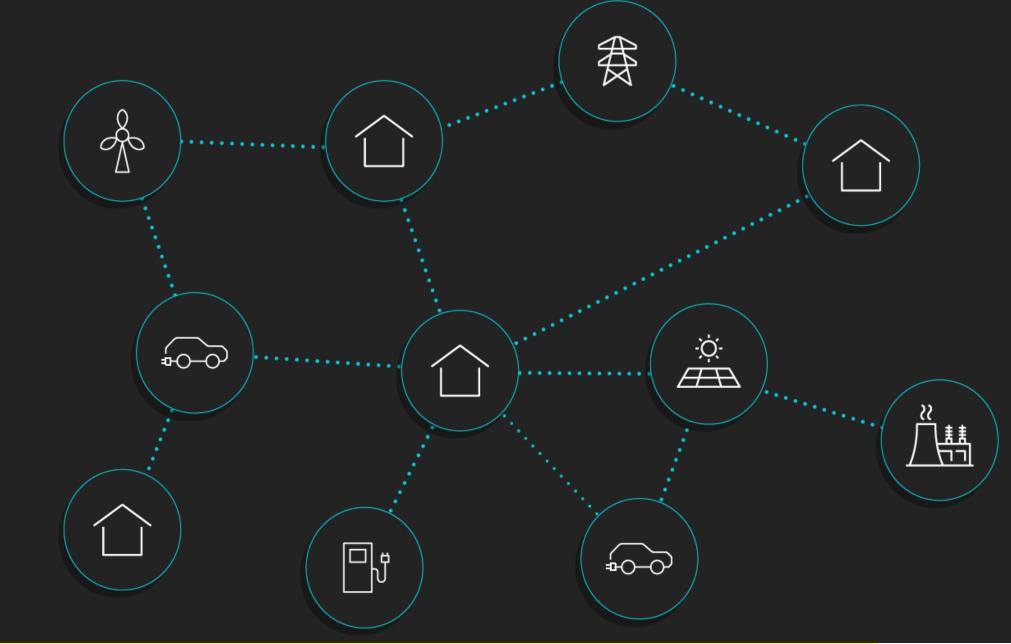
Falling RE prices against increasing Network costs

The Utility Death Spiral

Why utiliti es will change

- Utilities are losing revenue and customers
 From increased solar generation and grid defection
- Transportation costs are rising
 From poor utilization of network assets, & competition from local generation
- The fear of losing control as more assets for generation & storage, are owned by customers

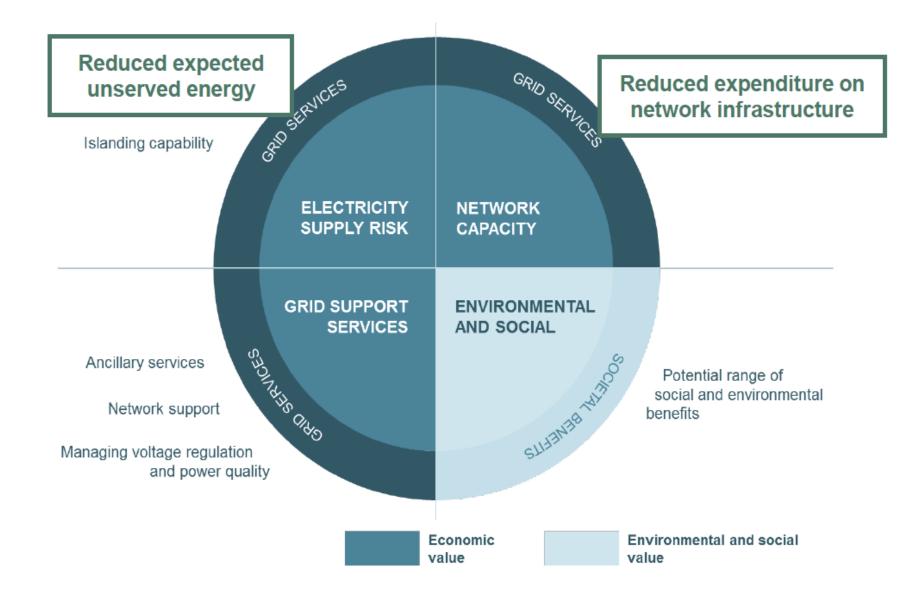
By 2050, up to 45% of all electricity in Australia will be generated by customers


The Traditional, Centralized Energy System

Electricity is generated from carbon-intensive, centralized sources, far from the end user. The infrastructure is impacted by natural disasters. End users have no control of where their power comes from, if the system fails or the price they pay.

This is what a decentralized electricity system looks like...

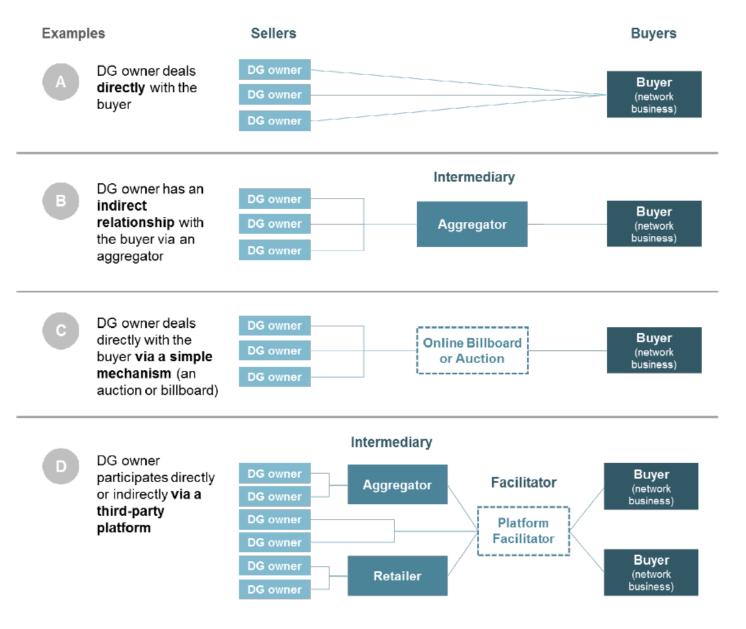
- Consumers
 empowered
- Clean
- Resilient
- Affordable
- Value creation for all players

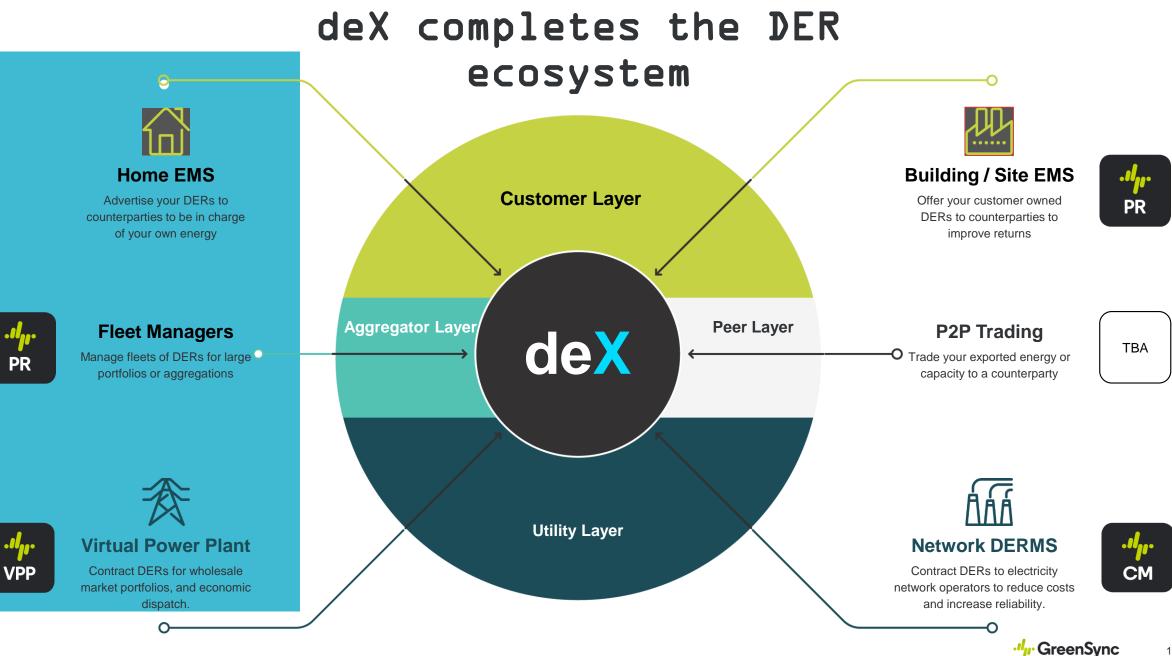


Coordination of distribution energy can save lot of wasted resource; Market ripe for aggregators

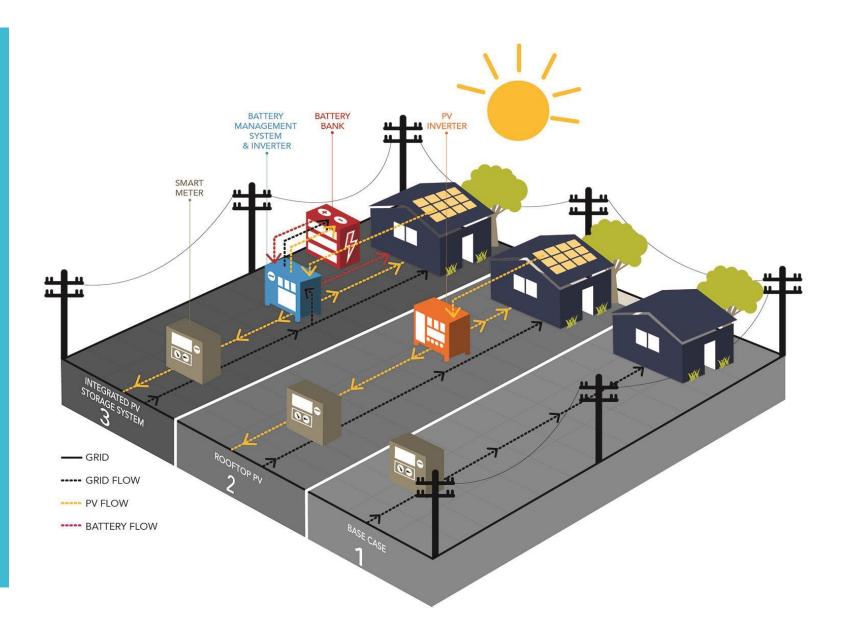
Opportunities created by DER Democratization of generation

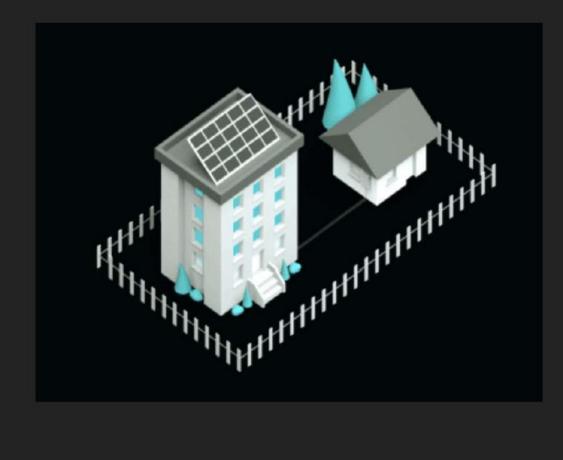
- Decentralized clean energy generation and consumption
- New markets
 - Aggregation for Ancillaries, Peer to Peer trade, blockchain technology
 - VPP, BTM and many other product offerings
- Reduced power procurement cost for retailers
 - Demand Response prosumers/aggregators
 - Reduced network losses


Can distributed generation provide value to the **network**?


How does a market for grid services look like?

A market where


- network businesses can transact with providers of grid services
- it reveal prices
- it facilitate transactions
- it has multiple players and structures


Changing role of grid

Peer-to-Peer electricity trading across the regulated electricity network.

Peer-to-Peer electricity trading behind the regulated electricity mastermeter.

Possible options to explore

- Tech Mahindra with Power Ledger Australia is working on the concept of making Microgrid Available As A Service (MAAS)
 - To make quality power accessible to remote tribal hamlets/hilly areas
- Need for real time monitoring of the system security with higher planned integration of RE including DER, particularly in RE rich states
 - What is the optimum **synchronous: asynchronous generation ratio**?
 - Mechanism to estimate DER installations including BTM
- Additional market avenues for decentralized trading of DER like DeX need to be studied

Implementation of Pilot Fast Response Ancillary Services (FRAS)

11th January, 2019

Fast Response Ancillary Services(FRAS)

8600 MW+ generation capacity

200 + instructions

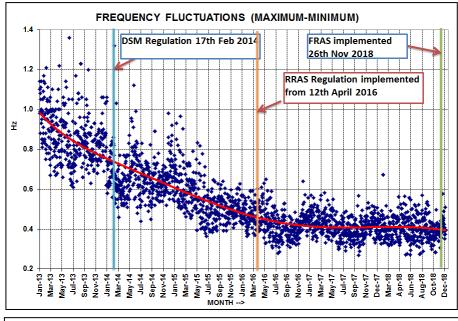
400 MW + max. FRAS Up

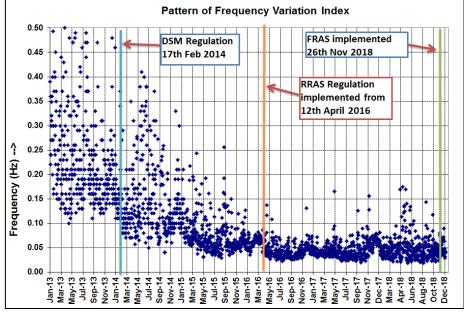
600 MW + max. FRAS Down

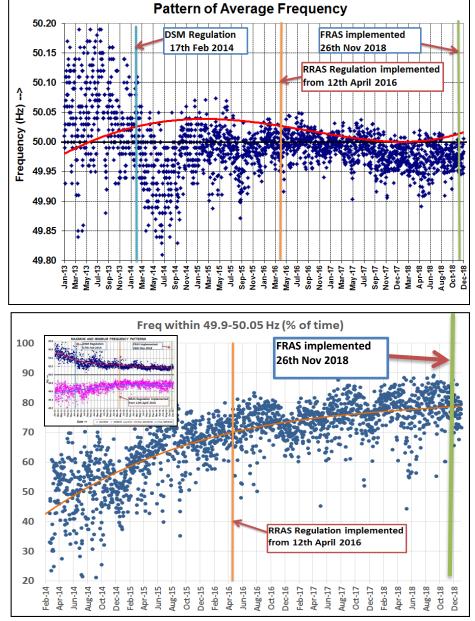
13 plants Despatched in Single Instruction

26th November, 2018 pilot project start date

20 Nos. hydro plants


~ 75 Nos. generating units


₹ 2.2 Lakhs


regulation Up Incentive

₹ 2.4 Lakhs regulation Down Incentive

Frequency Improvement

All India Hydro Generation

MW Z-axis 3.300e+004 2.700e+004 2.700e+004 3.300e+004 2.675e+004 2.125e+004 2.125e+004 2.050e±004 1.550e+004 75e+004 1.425e+004 9.750e+003 550e+004 2.050e+004 8.000e+003 31 4.000e+003 9.750e+083 29 1.425e+004 25 25 21 19 17 4.000e+083 Days 13 Days ¹³ 8.000e+003 281 241 281 9 201 241 7 201 161 161 121 5 121 81 81 41 dim: 1 41 dim: 1 1 1

November-18

December-18

Regulatory Initiative towards FRAS

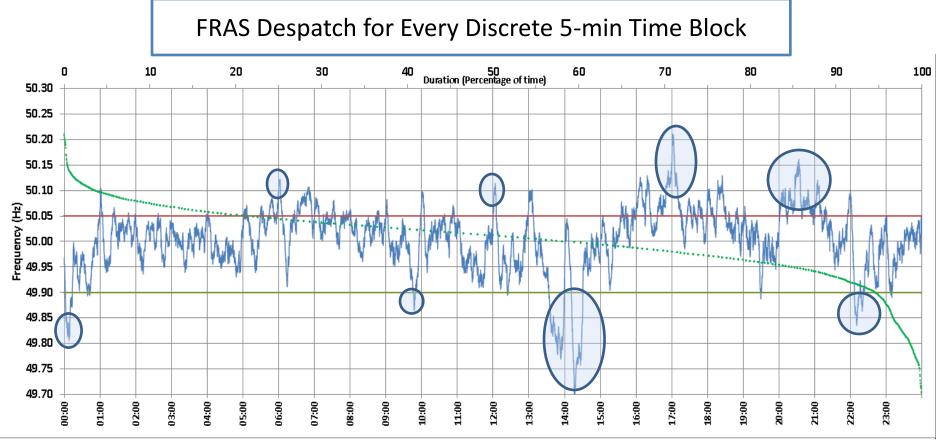
- CERC order in Petition No. 07/SM/2018 (Suo-Motu) dtd. 16 Jul'18
 - Pilot on 05-Minute Scheduling, Metering, Accounting and Settlement for Thermal/Hydro
 - Letter of Award to be placed by CTU by 11th Jan'19 with completion schedule of 3 months.

26th Nov'18 :Fast Response Ancillary Services (FRAS) started

All constraints declared by the hydro stations shall be honoured	Total energy delivered over the day shall be maintained as declared by the hydro station.	The total energy dispatched under FRAS shall be squared off by the end of the day
The schedules of the beneficiaries shall not be disturbed in the despatch of FRAS	RPCs to issue weekly FRAS accounts along with RRAS accounts	Incentive shall be paid from the DSM Pool on mileage basis at the rate of 10 paisa/kWh both for "up" and "down"

Stakeholder consultations

- 31st October, 2018
 - Consultations: NLDC/RLDCs with Hydro generators, Regional Power Committees
 - RPC:NRPC
 - Hydro generation company
 - NHPC
 - THDC
 - BBMB
 - NEEPCO
 - NTPC
 - SJVNL
 - RLDCs
 - NERLDC
 - ERLDC
 - NRLDC
- To understand the complexities of all stakeholders and evolve a consensus for broad based solutions.


Triggering Criteria

- Hour Boundary Frequency Variations
- Sudden Variations in Demand

- Grid Contingency
- RE Variation

• Ramp Management

Hydro Plants under FRAS

S1	Name	Utility	Region	Type (S/P)	No of	Unit Size	I/C (MW)	Туре	MW
				Type (0/1)	Units		1/0 (11 %)	Storage (S)	2761
1	Chamera-I			Р	3	180	540		
2	Dhauliganga			Р	4	70	280	Pondage	5843
3	Chamera-III	NHPC		Р	3	77	231	(P)	
4	Parbati III	NHPC		Р	4	130	520	Total	8604
5	Sewa-II			Р	3	40	120		
6	Dulhasti			Р	3	130	390		
7	Naptha Jhakri		NR	Р	6	250	1500		
8	Rampur	SJVN		Р	6	68.67	412	or Tandem	
9	Tehri	THE		S	4	250	1000	nydro static	ons
10	Koteshwar	THDC		S	4	100		ike Nathpa	
11	Koldam	NTPC		Р	4	200	800		
12	Pong			S	6	66	396	lhakri &	
13	Dehar	BBMB		R/P	6	165	990	Rampur FR/	۹S
14	Kopili			S	4	50	200	nstruction	are
15	Kopili-II			S	1	25	25	given	
16	Khandong	NEEPCO	NER	S	2	25		simultaneo	uslv
17	Doyang	-		S	3	25	75		
18	Loktak	NHPC		S	3	35	105	1	
19	Teesta-V			R	3	170	510	1	
20	Rangit	NHPC	ER	R/P	3	20	60	1	
_		Total		,	75	-	8604	-	8
									Ō

Operationalization of FRAS...(1)

1.1		Annexure-n
To	Nodal Agency	NHPC (LOKTAK POWER STATION)
	Concerned RLDC (NERLDC)	
Validiti	of the information	From: 14/11/2018 To: 31/83/2019
10000	4/11/2018	Fight, Participation To, Show Lord
	Generator Details for Participation in Fast Response Ancillary Ser	vices (FRAS - 1)
S.No.	Title/Parameters	Values/Data/Information
Sched	uling and Ancillary Service Related	
1	Number of Generating Units (e.g. 1x 100 MW + 2 x 250 MW)	3X35
2	Type of Plant (RoR, Storage, Pondage or Reservoir)	Storage
3	Installed Capacity of Unit (MW) - P	35
4	Start time for each unit (Standstill to Synchronization of unit to grid) (in minutes)	15
5	Minimum load at which unit can stably run after synchronization Unitwise (P1) (in MW)	3
6	Forbidden zones or high cavitation zones - Unitwise (From MW to MW) - P2 to P3	10 to 24 MW
7	Maximum possible Ex-bus injection (MW) (including overload if any) (P4)	35
8	Curnecs/MW from standstill to synchronization (CO)	1.4
9	Cumecs/MW for P1 generation level (C1)	0.4 Cumecs/MW
10	Curnecs/MW for P3 generation level(C3)	0.4 Cumecs/MW
11	Cumecs/MW for P4 generation level(C4)	0.4 Cumiecs/MWV
12	Cumecs/MW used for Declared Energy figure given to RLDC (CS)	0.4 Cumecs/MW
13	Cumecs/MW for P generation level (C)	0.4 Cumecs/MW
14	Water Usage/Requirement (in Currecs) at No Load	1.4
10		

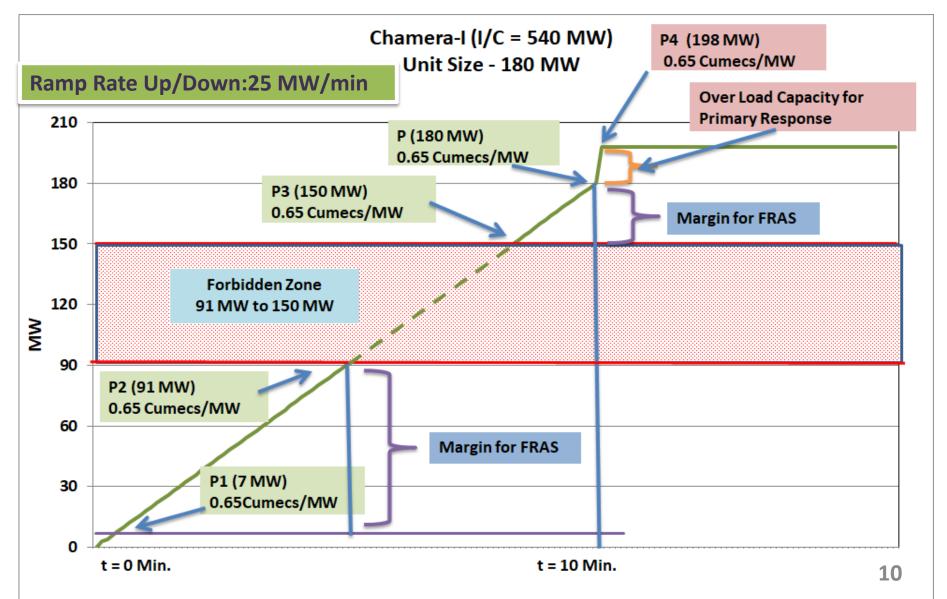
Plant-wise Information for FRAS				
S.No.	General Information			
1	Name	Chamera-II		
2	Owner	NHPC		
3	Total Installed Capadty (MW)	300		
- 4	Number of Generating Units (e.g. 1 x 100 MW + 2 x 250 MW)	3 x 100 MW		
5	Location (District & State)	Chamba, Himachal Pradesh		
6	Geographical Coordinates (Lat. & Long.)	32.5079,76.1700		
7	River/Water Sources	River Ravi		
	Type of Development (RoR, RoR with Pondage, Reservoir)	RoR with Pondage		
	Hydrology			
9	Annual Inflow (Mm ^b) (in 90 % dependable year)	300		
30	Dany/Barrage/Weir Type	Concrete Gravity Dam		
11	FRL (m)	1162		
12	MDDL (m)	1152		
13	Gross storage (Mm ³)			
14	Uve storage (Mm ⁸)	1.56		
15	Hydrological constraints			
	Equipment Details			
	Turbine Make	Aistom		
17	Turbine Type (Francis/Kaplan/Impulse/Pelton/any other)	Vertical Francis		
18	Rated Turbine Output (MW)	100		
19	Rated Head (m)	243		
20	Net Max and Min Head (m)	266.66/244.28		
21	Design Discharge (m [*] /sec)	145.19		
22	Generator Make	GE		
23	Rated Generator Output (MW)	100		
24	Rated Voltage (kV)	11		
25	Rated P.J	0.9		
26	Excitation System Type	Digital		
27	Governing System Type			
28	Generator Transformer Nos./Type (1-phase/3-phase)	9/1-phase		
29	GT Rating (MVA)	41		

Collected Basic Information from FRAS Providers

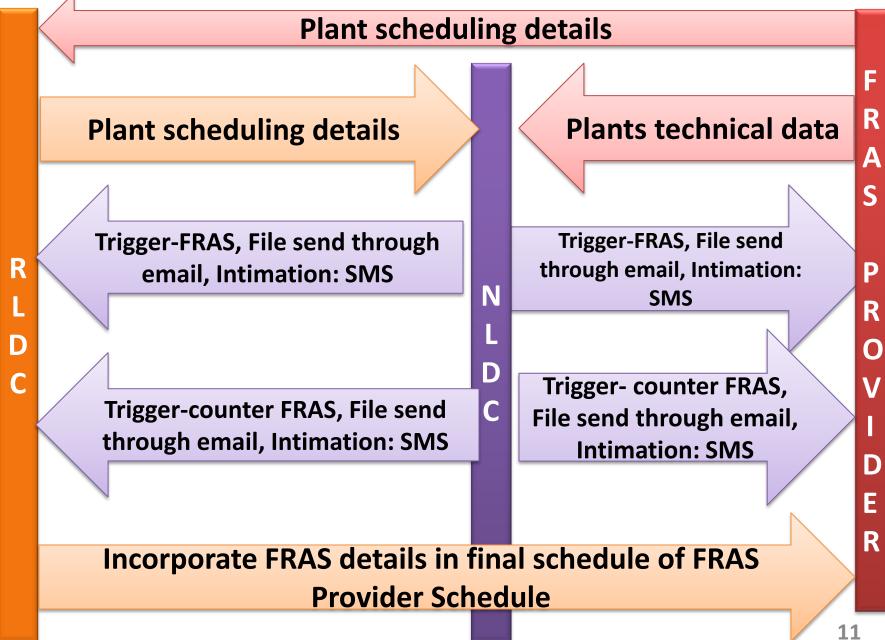
78424

11-116 / Sector - 33, Parietaba

19	operation	
20	Requirement of Tandem Operation of the Plant (if Yes, with which plant and details)	NO
Primar	y Response Related	
21	Present Governor Droop Setting (Unit-wise)	4% in all units
22	Considering all the constraints, how much further droop setting can be improved and range thereof	Upto 3%
Blacks	tart Related	1
23	Blackstart Facility availability (Yes/No)	Yes
24	The date of last mock black start exercise done and the droop setting of the unit kept during the drill	20/04/2010 (droop setting-1%)
Constr	raints Related	treat and the states
25	Any Other Information including the constraints (Time-specific, Location- Specific, Event Specific, Unit-Specific, etc.)	1.Siren is to be blown 30 min before starting of units.
	C	fm
	Signature of Review	Authorized Signatory (with Stamp) Plic Net / Vijay Kynar Sinta Plic Net / Vijay Kynar Sinta Plic Net English (Bett)
	े जो प्रय	esternation / Olava Exgineer (O&M

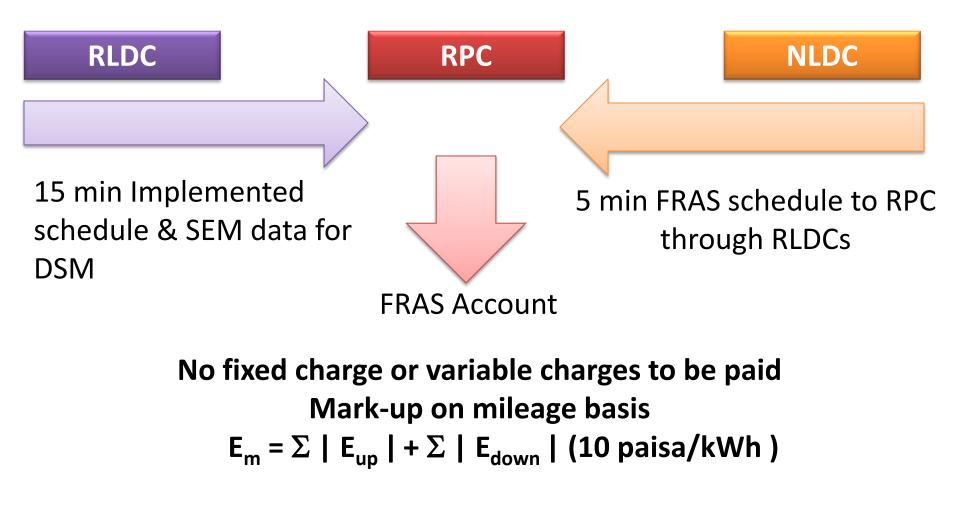

16

/aria Ram Ram


35 Transmission Constraints (if any) Operational Data 35 Design Energy (MU) 36 Design Energy (MU) 37 Annual Energy for last five years (in MU) 38 2014-15 39 2015-16 3016-17 2015-16 3016-17 2017-18 30 Installed Capacity of Unit (MW) - P 30 Start time for each unit (Standerli to Synchronization of unit to grid) IS Min 40 Which value (Curreou)/MW) is used for declaring MW capability? 41 Minimum load at which unit can stably run after synchronization - U DMW 42 Forbidden zones or high cavitation zones - Unitwise (From MW to M 20 MW to 70 MW 43 Maximum loading possible on unit (continuousi) (P4) 110 MW 44 Unitwise Curreou/WW for P, P1,F2,P3 and P4 generation level as well as curreou/MW P1: 0.45 Curreou/MW 44 Vater Usage/Requirement (in Curreou) at No Load 7.53 Curreou/MW 45 Water Usage/Requirement (in Curreou) at No Load 7.53 Curreou 46 Maximum possible Ex-but injection (MW) (including overload IF any) 226 MW 47 Ramp-Up Rate, (MW/Min) for each unit 20 MW / min	34	Transmission Line Details	
36 Design Energy (MU) 3499.89 37 Annual Energy for last five years (In MU) 2013-34 2013-34 2014-35 2015-35 2015-36 2015-36 2017-38 30 Installed Capacity of Unit (MW) - P 300 MW 30 Start time for each unit (Standstill to Synchronization of unit to grid) IS Min 40 Which value (Cameau/MW) is used for declaring MW capability? 0.45 Cameau/MW 41 Minimum load start stably run after synchronization - U ID MW 300 MW to 70 MW 42 Forbidden zones or high cavitation zoner - Unitwise (From MW to M 20 MW to 70 MW 43 Maximum loading possible on unit (continuoust) (P4) 110 MW 44 P1: 0.45 Cameau/MW 44 7.53 Cameau/MW 45 Water Utage/Requirement (In Cameau) at No Load 7.53 Cameau 46 Maximum possible Ex-bus injection (MW) (Including overload If any) 326 MW	35	Transmisison Constraints (If any)	
37 Annual Energy for last five years (in MU) 30 2013-14 2014-15 2014-15 3015-16 2015-16 30 Installed Capacity of Unit (MW) - P 30 2017-18 30 Which value (Curreat,/MW) is used for declaring MW capability? 40 Which value (Curreat,/MW) is used for declaring MW capability? 41 Minimum load at which unit can stably run after synchronization - U 10 MW 42 Forbidden zones or Nigh carkation zones - Unitwise (From NW to M 20 MW to 70 MW 43 Maximum loading possible on unit (continuous) (P4) 44 Discharge for all the units are same and are calculative P1: 0.45 Curreat/MW 44 7.53 Curreat/MW 45 Water Utage/Requirement (in Curreat) at No Load 7.53 Curreat 46 Maximum possible Ex-bus injection (MW) (including overload if any) 326 MW		Operational Data	
2013-34 2014-15 2014-15 2015-16 2015-17 2017-18 2018-17 2018-17 2019-18 2019-18 2019-18 2019-18 2019-18 2019-19 2019-18 2019-19 2019-19 2019-10 2019-10 2019-10 2019-11 2019-11 2019-11 2019-11 2019-11 2019-11 2019-11 2019-11 2019-11 2019-11	36	Design Energy (MU)	1499.89
2014-15 2015-15 2015-15 2015-17 2017-18 2	37	Annual Energy for last five years (in MU)	
2015-16 2016-17 2017-18 30 Installed Capacity of Unit (MW) - P 30 Start time for each unit (Standstill to Synchronization of unit to grid) 15 Min 40 Which value (Currear)/MW) is used for declaring MWh capability? 0.45 Currear/MW 41 Minimum load at which unit can tably run after synchronization - U ID MW 0.00 MW 42 Forbidden some or high carkation zoner - Unitwise (From MW to M 00 MW to 70 MW 0.05 Currear/MW 43 Maximum loading possible on unit (continuous) (P4) 110 MW 0.05 Currear/MW 43 Maximum loading possible on unit (continuous) (P4) 110 MW 0.045 Currear/MW 44 P1: 0.45 Currear/MW P1: 0.45 Currear/MW P2: 0.45 Currear/MW 44 7.53 Currear/MW P4: 0.45 Currear/MW P4: 0.45 Currear/MW 44 7.53 Currear/MW P4: 0.45 Currear/MW P4: 0.45 Currear/MW 45 Water Utage/Requirement (in Currear) at No Load 7.53 Currear P4: 0.45 Currear/MW 46 Maximum possible Ex-bus injection (MW) (including overload if any) 326 MW 326 MW 326 MW		2013-14	
2016-17 2017-18 30 31 32 33 34 35 36 37 38 39 39 30 30 31 32 33 34 35 36 37 38 39 39 31 32 34 35 36 37 38 39 39 31 31 32 33 34 35 36 37 38 39 39 39 30 30 30 30 30 30 <t< td=""><td></td><td>2014-15</td><td></td></t<>		2014-15	
2017-18 38 Initalied Capacity of Unit (MW) - P 39 Start time for each unit (Standstill to Synchronization of unit to grid) 15 Min 40 Which value (Cumear/MW) is used for declaring MWh capability? DAS Cumear/MW 41 Minimum load at which unit can stably run after synchronization - U 10 MW DAS Cumear/MW 42 Forbidden zones or high cavitation zones - Unitwise (From MW to N 20 MW to 70 MW 43 Maximum loading posible on unit (continuous) (P4) 110 MW 44 Discharge for all the units are same and are calculative P1: 0.45 Cumear/MW 44 P2: 0.45 Cumear/MW 44 7.53 Cumear/MW 45 Water Usage/Requirement (in Cumear) at No Load 7.53 Cumecs 46 Maximum possible Ex-bus injection (MW) (including overload if any) 326 MW		2015-16	
38 Installed Capacity of Unit (MW) - P 100 MW 39 Start time for each unit (Standetill to Synchronization of unit to grid) IS Min 40 Which value (Cumeor/MW) is used for declaring MWh capability? 0.45 Cumeor/MW 41 Minimum load at which unit can tably run after synchronization - U ID MW 0.45 Cumeor/MW 42 Forbidden zones or high cavitation zones - Unitwise (From MW to M 30 MW to 70 MW 100 MW 43 Maximum loading possible on unit (continuous) (P4) 110 MW 44 Unitwise Cumeor/MW for P, P1,P2,P3 and P4 generation level as well as cumeos from standstill to synchronization. P1: 0.45 Cumeor/MW 44 7.53 Cumeor/MW P2: 0.45 Cumeor/MW 45 Water Utage/Requirement (in Cumeor) at No Load 7.53 Cumeor 46 Maximum possible Ex-bus injection (MW) (including overload if any) 326 MW		2016-17	
30 Start time for each unit (Standstill to Synchronization of unit to grid) 15 Min 40 Which value (Cumear,/MW) is used for declaring MWh capability? 0.45 Cumecs/MW 41 Minimum load at which unit can stably run after synchronization - U ID MW 0.45 Cumecs/MW 42 Forbidden somes or high caribation some - U ID MW to M30 MW to 70 MW 10 MW 43 Maximum loading possible on unit (continuous) (P4) 110 MW 44 Discharge for all the units are same and are calculative P1: 0.45 Cumecs/MW 44 P1: 0.45 Cumecs/MW 44 7.53 Cumecs/MW 45 Water Utage/Requirement (in Cumect) at No Load 7.53 Cumecs 46 Maximum possible Ex-but injection (MW) (including overload if any) 326 MW		2017-18	
40 Which value (Cumeos/NW) is used for dedaring MWh capability? 0.45 Cumeos/MW 41 Minimum load at which unit can stably run after synchronization - U 10 MW 0.45 Cumeos/MW 42 Forbidden zones or high cavitation zones - Unitwise (From NW to 30 MW to 70 MW 10 MW 43 Maximum loading possible on unit (continuous) (P4) 110 MW 44 Discharge for all the units are same and are calculative P1: 0.45 Cumeos/MW 44 P2: 0.45 Cumeos/MW 44 7.53 Cumeos/MW 45 Water Usage/Requirement (in Cumeos) at No Load 7.53 Cumeos 46 Maximum possible Ex-but injection (MW) (including overload if any) 326 MW	38	Installed Capacity of Unit (MW) - P	100 MW
41 Minimum load at which unit can stably run after synchronization - U 10 MW 42 Forbidden zones or high cavitation zones - Unitwise (From NW to N 00 MW to 70 MW 43 Maximum loading possible on unit (continuous) (P4) 110 MW 44 Discharge for all the units are same and are calculative P2: 0.45 Cumeos/MW 44 P2: 0.45 Cumeos/MW 45 Water Utage/Requirement (in Cumeos) at No Load 7.53 Cumeos 46 Maximum possible Ex-bus injection (MW) (including overload if any) 326 MW	39	Start time for each unit (Standstill to Synchronization of unit to grid)	15 Min
42 Forbidden zones or high cavitation zones - Unitwise (From NW to N30 MW to 70 MW 43 Maximum loading possible on unit (continuous) (P4) 110 MW 43 Maximum loading possible on unit (continuous) (P4) 110 MW 44 Discharge for all the units are same and are calculative P2: 0.45 Cumec/MW 44 P1: 0.45 Cumec/MW 45 Water Utage/Requirement (in Cumect) at No Load 7.53 Cumect 46 Maximum possible Ex-bus injection (MW) (including overload if any) 326 MW	40	Which value (Cumeox/MW) is used for declaring MWh capability?	0.45 Cumecs/MW
45 Maximum loading possible on unit (continuous) (P4) 110 MW 45 Maximum loading possible on unit (continuous) (P4) Discharge for all the units are same and are calculative 46 P: 0.45 Cumecs/MW	-41	Minimum load at which unit can stably run after synchronization - U	10 MW
Unitwise Currect/MW for P, P1,P2,P3 and P4 generation level as well as currect from standstill to synchronization. P2: 0.45 Currect/MW P2: 0.45 Currect/MW P2: 0.45 Currect/MW P4: 0.45 Currect/P	42	Forbidden zones or high cavitation zones - Unitwise (From MW to M	30 MW to 70 MW
Hold State Comeon/MW for P, P1,P2,P3 and P4 generation level as well as comeon/MW for P, P1,P2,P3 and P4 generation level as well as comeon/MW P2: 0.45 Comeon/MW P2: 0.45 Comeon/MW P4: 0.45 Comeon/M	43	Maximum loading possible on unit (continuous) (74)	130 MW
Unitwite Currect/WW for P, P1,P2,P3 and P4 generation level as well as currect from standstill to synchronization. 44 44 44 45 Water Usage/Requirement (in Currect) at No Load 45 Water Usage/Requirement (in Currect) at No Load 45 Maximum possible Ex-bus injection (MW) (including overload If any) 326 MW			P: 0.45 Cumece/MW
well as curred: from standstill to synchronization. P2: 0.45 Curred/MW P2: 0.45 Curred/MW P2: 0.45 Curred/MW 44 P4: 0.45 Curred/MW 45 Water Usage/Requirement (in Curred) at No Load 7.53 Curred: 46 Maximum possible Ex-bus injection (MW) (including overload if any) 326 MW		Linituine Concert/MW for P. P1 P2 P3 and P4 reparation level as	P1: 0.45 Cumea/MW
P2: 0.45 Cumecs/MW P4: 0.45 Cumecs/MW P4: 0.45 Cumecs/MW 44 45 Water Utage/Requirement (in Cumecs) at No Load 7.53 Cumecs 46 Maximum possible Ex-bus injection (MW) (including overload if any) 326 MW		well as curries from standstill to synchronization.	
44 7.53 Currect from Standstill to Synchronization 45 Water Usage/Requirement (in Currect) at No Load 7.53 Currect 46 Maximum possible Ex-but injection (MW) (including overload if any) 326 MW			P3: 0.45 Cumea/MW
45 Water Utage/Requirement (In Curried) at No Load 7.53 Currieds 46 Maximum possible Ex-bus Injection (MW) (Including overload If any) 326 MW			P4: 0.45 Cumers/MW
46 Maximum possible Ex-bus injection (MW) (including overload IF any) 326 MW			
	45	Water Usage/Requirement (in Curners) at No Load	7.53 Curried
47 Ramp-Up Rate (MW/Min) for each unit 70 MW / min	46	Maximum possible Ex-bus injection (MW) (including overload if any)	326 MW
	47	Ramp-Up Rate (MW/Min) for each unit	70 MW / min

Operationalization of FRAS...(2)

Sample Hydro Station Data



FRAS Information Process Overview

Accounting & Settlement

Respective RPC publishing FRAS Account along with DSM & RRAS Account

Sample Instruction to FRAS Provider

FRAS dispatched Details

Alerts

If there are problems with how this message is displayed, click here to view it in a web browser.

Sent: Tue 08-01-2019 05:41

cps2operation@gmail.com; koldam.eemg@gmail.com; ncrcrhq@gmail.com; Rishabh Pandey (ऋषभ पांडे); sewa2ph.nhpc@gmail.com; To: nhpcdulhastielec@gmail.com; parbati3@gmail.com; pccont@bbmb.nic.in; pbt3operation@gmail.com; dhauligangapho@gmail.com; phelectrical.maint@gmail.com; rhep.phoperation@gmail.com; controlroomcps1@gmail.com; controlroomchamera1@gmail.com; operation.koteshwar@gmail.com; Nitesh Kumar (नितेश कुमार); cps3ph@gmail.com; atul98894@gmail.com; crgmc2016@gmail.com; rk raina@sjvn.nic.in;

Message 🕮 1NR08012019.csv (10 KB)

INR(15)08012019.csv (4 KB) INRNET08012019.csv (13 KB)

Gen	Regulation	05:55-06:00	06:00-06:05
CHAMERA1	UP/DOWN	-7	-14
CHAMERA3	UP/DOWN	0	0
PARBATI3	UP/DOWN	0	0
SEWA2	UP/DOWN	-27	-55
DULHASTI	UP/DOWN	0	0
RAMPUR	UP/DOWN	-28	-75
TEHRI	UP/DOWN	0	-20
KOTESHWR	UP/DOWN	0	0
KOLDAM	UP/DOWN	-80	-120
PONG	UP/DOWN	0	0
DEHAR	UP/DOWN	-9	-29
NJPC	UP/DOWN	-155	-161

	А								
	А	BU	BV	BW	BX	BY	BZ	CA	CB
	GEN	05:55-06:0	06:00-06:0	06:05-06:1	06:10-06:1	06:15-06:2	06:20-06:2	06:25-06:3	06:30-06:30
	CHAMERA1	-7	-14	0	0	0	0	0	0
	CHAMERA3	0	0	0	0	0	0	0	0
-	PARBATI3	0	0	0	0	0	0	0	0
	SEWA2	-27	-55	0	0	0	0	0	0
	DULHASTI	0	0	0	0	0	0	0	0
	RAMPUR	-28	-75	0	0	0	0	0	0
•	TEHRI	0	-20	0	0	0	0	0	0
	KOTESHWR	0	0	0	0	0	0	0	0
)	KOLDAM	-80	-120	0	0	0	0	0	0
L	PONG	0	0	0	0	0	0	0	0
2	DEHAR	-9	-29	0	0	0	0	0	0
3	NJPC	-155	-161	0	0	0	0	0	0
Ļ									

FRAS Information Display

FRAS(Fast Response Ancillary Services)

NLDC	Home	Apply FRAS	Inverse FRAS	Generators /	FID2019-01	-085412	3	×
DATE		SHOW			Details of This	s dipatch a	are as Follows	
08-01-2019)	SHO	ow		Gen	Region	05:55-06:00	06:00-06:05
Instruction id	MW	Generators			KOPILI	NER	-31	-31
					KOPILI2	NER	0	0
FID2019- 01-	-337	KOPILI, KOPILI2,	KHANDONG,DOY	ANG,TEESTA,RANGI	KHANDONG	NER	0	0
0854123					DOYANG	NER	0	0
FID2019-	102	RAMPUR,NJPC			TEESTA	ER	0	0
01-087540					RANGIT	ER	0	0
FID2019- 01-087629	21	CHAMERA1			CHAMERA1	NR	-7	-14
					CHAMERA3	NR	0	0
FID2019- 01-08779	30	KOLDAM			PARBATI3	NR	0	0
FID2019-	20	TEHRI			SEWA2	NR	-27	-55
01-087822	20	1211M			DULHASTI	NR	0	0
					DAMDID	ND	28	75

FRAS Software.....(1)

Plant FRAS	under				_				min blo					
		RAS	(Га	st	Kes	spc	onse	e An	cilla	ry S	Serv	lces	5)	
NLD	C me	Apply FR	RAS Ir	nverse F	RAS	generat	ors Ap	pilea instru	ctions Re	ports				
		11.2					1	•		•				
							Data S	Status						
	マン					ALL Ind	ia Available	e Margin For	FRAS					
	GEN	Declared En	ergy Sched	uled Energ	y 00:00-00	:05 00:05	-00:10 00:10	-00:15 00:15-0	0:20 00:20-00:2	5 00:25 -00	:30 00:30-00:	35 00:35-00:4	0 00:40-00:4	5 00:45-0
1	TEESTA	6	2		100	100	100	100	100	100	0	0	0	0
2	CHAMERA2	2	0		0	0	0				0	0	0	0
3	CHAMERA1	3	1		0	0	0	Sched	ule		0	0	0	0
4	CHAMERA3	1	0		÷		-	energy	y up to		0	0	0	0
5	PARBATI3	1	0		0	0	0				0			-
6	SEWA2	0	0		0	0	0	curren	t block		0	Blo	c <mark>k wis</mark> e	е ,
7	DULHASTI	5	2		71	71	71	/ 1	/ 1	71	71	ava	ilable	margin
8	NJPC	11	4		0	0	0	0	0	0	0			U
9	RAMPUR	3		<u> </u>	0	0	Decla	red	0	0	0	for	Up reg	gulation
10	TEHRI	7	2		0	0			0	0	0	0	U	U
11	KOTESHWR	2	1	L	10	10	energ	SY 01	10	10	10	10	10	10
12	KOLDAM	4	1		0	0	statio	n	0	0	0	0	0	0
13	KOPILI	4	2		0	0			0	0	0	0	0	0
14	KOPILI2	0	0		0	0	0	0	0	0	0	0	0	0
15	KHANDONG	0	0		0	0	0	0	0	0	0	0	0	0
16	DOYANG	0	0		0	0	0	0	0	0	0	0	0	0

FRAS Software.....(2)

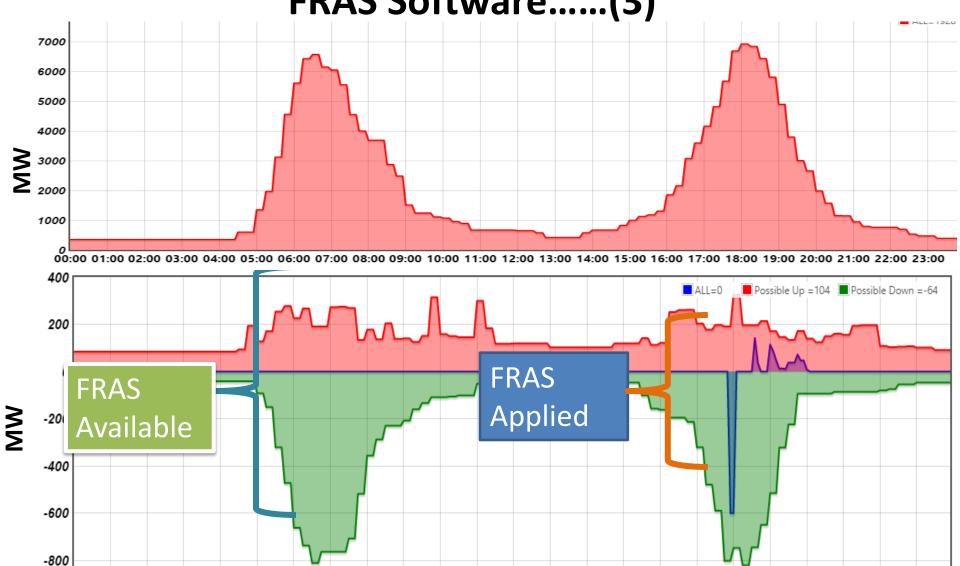
(Fast Response Ancillary Services)

Inverse FRAS Generators

S

Option to select or

deselect Region


Applied Instructions

Accounting Reports -

Kindly Deselect Generators getting Share Less than five and recalculate Despath. (No generators should be despathed with quantum less than 5MW.)

Reg	ions:					,		S	tart Tir	ne		I	End Time		Qu	Jantum					_
AR	⊠, ER ⊠, NR ⊠,	SR	■, W	/R 🗆					19:05		•		19:10		•	100			alculate	Dispatc	h
	All India	Av	ailab	le N	/larg	jin F	or FRA	S (Reg	jion W	se).											
	in generator	19:0	19:1	19:1	19:2	19:2	19:30-1	19:35-	1 19:40-	1 19:45-1											
1	🖉 KOPI I	0	0	0	0	0	0	0	0	0				•	wailable Ma	min					
2	🕑 KOPI 12	0	0	0	0	0	0	0	0	0	E F				wanabie wa						
3	🖉 KHAI DO	0	0	0	0	0	0	0	0	0	_		~							/ -	KOPILI
4	🕑 DOY, NG	0	0	0	0	0	0	0	0	0	_		Optior	n to	selec	C				/ -	KOPI
5	🕑 LOKT AK	2								9		Ti	me an	d a	uantu	m				_	KHA
б	✓ TEES .	0	0	oti	or	n to	o se	lect	or	0				-							DOY
7	RAN IT	2								2	for FRAS despatch									LOK TEE	
8	CHAI IERA	2		ae	ese	ele	ct n	ydro)	0										166	
9	CHAI IERA	0			S	sta	tion			0				1						Fina	I Dispatche
10	☑ PARE ATI3	0								0					Generator	UP/DOWN	19:05-19:10	19:10-19:19	5 19:15-19:20	19:20-19:2	5 19:25-19:30
11	🗷 SEW, 2	0	U	U	U	U	0	0	U	0				1	CHAMERA1	NHPC	-59	-59	-27	-27	-27
12	🕑 DULI AST	7	7	7	7	7	7	7	7	7				2	SEWA2	NHPC	-27	-27	0	0	0
13	RAMPUR	14	14	8	8	8	3	3	3	0				3	RAMPUR	SJVNL	-23	-23	-11	-11	-11
14	☑ TEHRI	40	40	2	2	2	2	2	2	53				4	TEHRI	THDC	0	0	-15	-15	-15
15	☑ KOTESHW	48	48	81	81	81	84	84	84	84				5	KOLDAM	NTPC	-40	-40	0	0	0
16	🖉 KOLDAM	0	0	0	0	0	0	0	0	0				7	DEHAR NJPC	BBMB	-29 -124	-29	-29 -62	-29 -62	-29 -62
17	PONG	0	0	0	0	0	0	0	0	0				1 8	KOPILI	NEEPCO	-124	-124	-02	-02	-02
18	DEHAR	5	5	5	5	5	17	17	17	17				9	KOPILI KOPILI2	NEEPCO	-3	-3	-3	-3	-3
19	☑ NJPC	51	51	26	26	26	13	13	13	0				10	LOKTAK	NHPC	-27	-27	-27	-27	-27
										_				11	Total	UP/DOWN		-363	-205	-205	-205

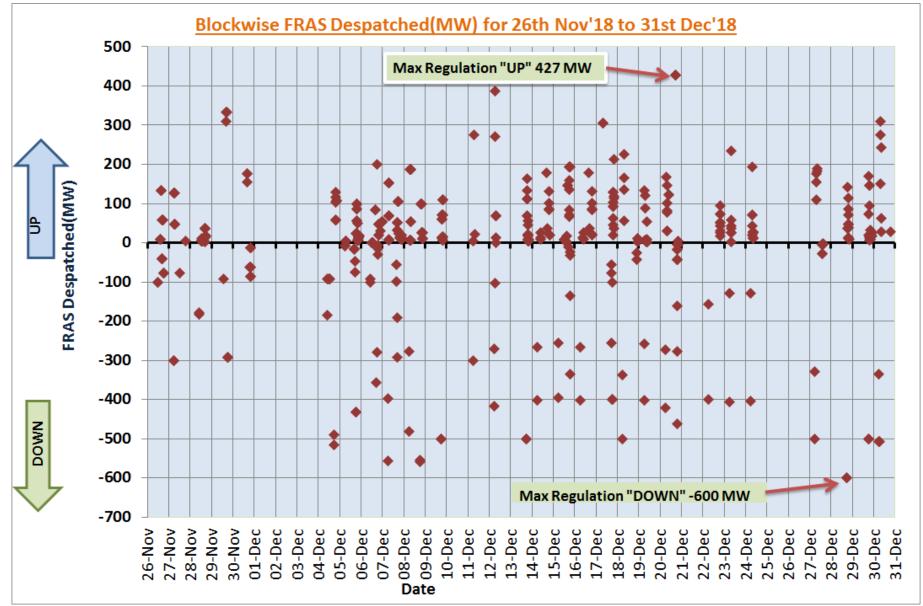
FRAS Software.....(3)

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

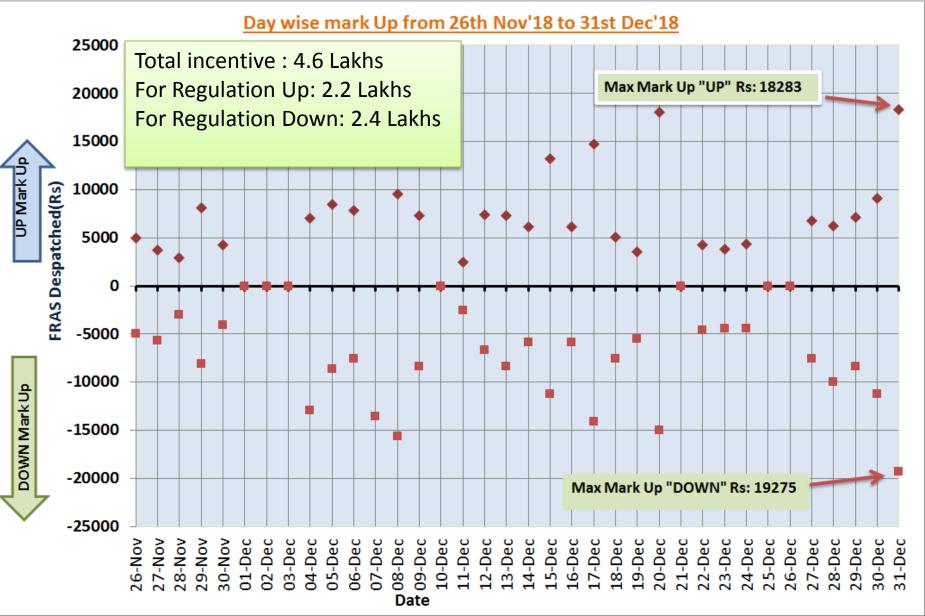
-1000

SCADA Display

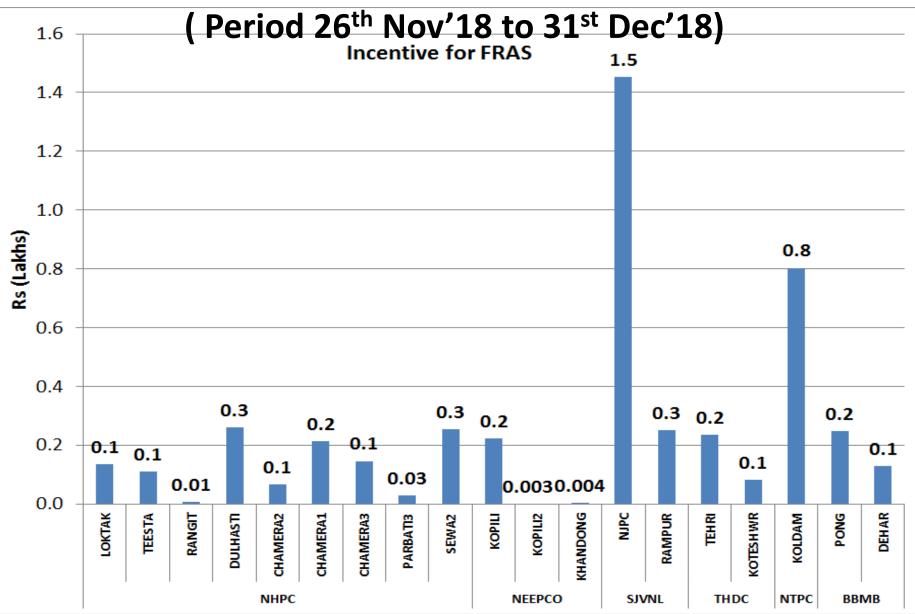
(

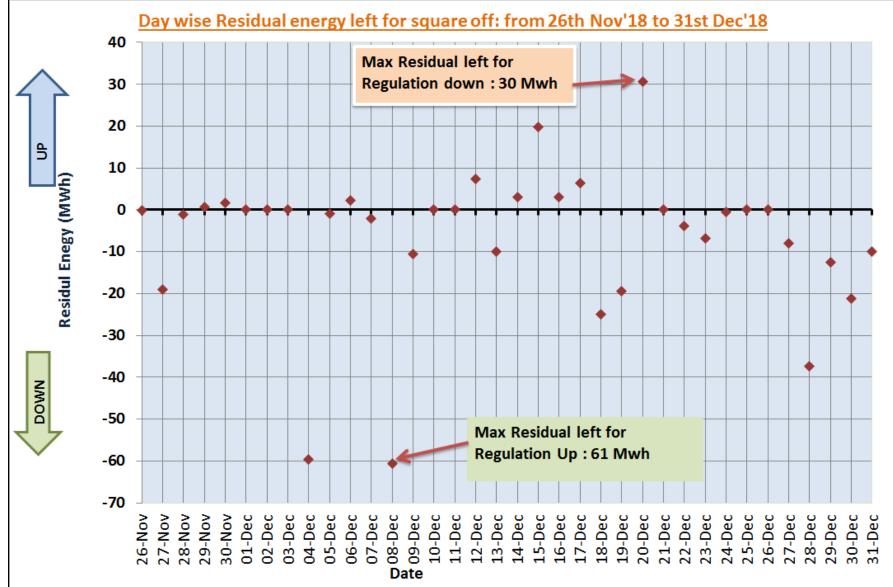

08-	Jan-201	91	17:21	: 45					FA	ST	RES	PON	ISE	AN	CIL	LARY	SER
THER HYI GA	RO 15	4784 117 143	-	UCLE WINI SOLA		662 644 510	1 NET	TOTAL		51553 14839	9						
S. NO.	PLANT NAME	REG.	STATE	TYPE	INSTALLED CAPACITY		DC (MW) A	SCH. (MW) B	ACTUAL (MW) C		FRAS Applied	Average (Daily) E	Msximum (Daily) F	Minimum (Daily) G	Declared Energy (Daily) H (MWb)	Generated Energy (Daily) (sch) I (MWh)	Avsilable Margin (Daily) (MU) J=H-I
1	NATHPA-JHAKR	I N	HP	P	6x250	1500	1350	630	623	-7	0	262	1278	0	6800	8800	2517
2	BHAKRA	N	PUNJAB	S	5x108 + 5x157	1379	1129	1129	1134	5	0	571	1161	421	15129	10296	5910
3	TEHRI-I	N	UT 'KND	S	4x250	1000	1032	988	1012	24	0	401	1036	4	9880	6800	3302
4	KOLDAM	N	HP	P	4x200	800	872	396	387	-9	0	86	848	-9	2616	3544	1175
5	CHAMERA-I	N	HP	P	3x180	540	550	0	-3	0	0	69	547	0	2000	2300	-300
6	PARBATIAN	N	HP	P	4x130	520	0	0	0	0	0	0	0	0	0	507	-507
7	TEESTA	E	SIKKIM	R	3x170	510	314	314	315	1	0	58	357	-2	2529	937	1592
8	RAMPUR	N	HP	P	6x68.7	412	375	176	183	7	0	73	369	0	1891	2446	702
9	KOTESHWAR	N	UT 'KND	S	4x100	400	350	180	155	-25	0	142	402	54	3455	2340	1143
10	PONG	N	HP	S	6166	396	260	260	265	4	0	234	267	119	5753	5866	1993
11	DULHASTI	N	J&K	P	3x130	390	265	257	262	5	0	3	262	0	1855	3700	1838
12	CHAMERA-II	N	HP	P	3x100	300	200	198	198	0	0	53	204	0	1338	1696	538
13	DHAULI GANGA	N	UT 'KND	P	4x70	280	291	138	138	0	0	34	284	0	1028	1349	479
14	CHAMERAJII	N	HP	P	3x77	231	0	0	0	0	0	0	U	0	0	<mark>913</mark>	-913
15	KOPILI-I	NE	ASSAM	S	4 x 50	200	96	96	97	1	0	97	97	97	2304	1564	740
16	SEWA-II	N	J&K	P	3x40	120	130	40	37	-3	0	14	127	0	390	390	0
17	LOKTAK	NE	MANIPUR	S	3x35	97	105	95	107	12	0	35	106	0	1097	538	559
18	DOYANG	NE	AP	S	3x25	75	36	33	18	-15	0	1	23	-2	153	15	137
19	KHANDONG	NE	ASSAM	s	2x25	50	0	0	0	0	0	0	0	0	0	0	0
20	корпыни	NE	ASSAM	S	1±25	25	22	22	23	1	0	0	8	0	132	2	130
	NORTHERN RI	CION			63 UNITS	8268	6804	4391	4255	1	0	0	0	0	52135	50946	17672
	EASTERN RE	CION			3 UNITS	510	314	314	315	1	0	0	0	0	2529	0	1206
NO	RTH-EASTERN	REGIO	N		13 UNITS	447	259	246	245	-1	0	0	0	0	1382	0	1772
	ALL INDI	A			79 UNITS	9225	7377	4951	4815	1	0	0	0	0	56046	50946	20651

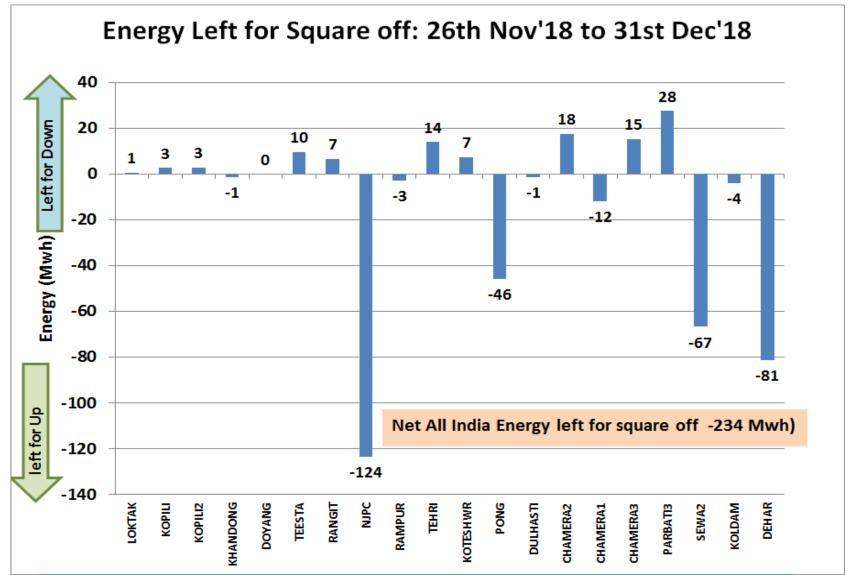
Sample FRAS Accounts


			ERP	C						N	RPC		
										Northern RRAS Settlement Accor	Regional Power Comm		
			EASTERN REGION	AL POWER COMMITTE	F, KOLKATA-700033			1.			FRAS Provider from t		
			FRAS S	iettlem ent Accour	nt by ERPC		Date: 14/12/2018		Sr. No.	FRAS Provider Name	Up regulation due to FRAS (MWh)	Down regulation due to FRAS (MWh)	Markup Charges as per CERC order (Rs)
								1	1	CHAMERA HEP	8.583333	8.499999	1708
			ERAS Account	t for Week: 26-No	+18+002-Dec-19				2	CHAMERA-II HEP	1.666666	1.666666	333
			PROJ ACCOUNT	101 11220-110	-10 CO 01-D et-10				3	CHAMERA-III HEP	4.166670	4.666666	883
			Ph annot	its to the FRAS Provide	wish from the Dishi now	al.			4	DEHAR HEP	0.000000	0	0
Г					and the main the dama por				5	DULHASTI HEP	28.083334	27.249999	5533
	Sr.No	FRAS Provider Name	FRAS U.P. Eup(MVVH)	FRAS DOWN Edown(MVM0	Mileage Em(MWI1)	Incentive as per CERC Order(Rs)	Total Charges (Rs)		6	KOLDAM HEP	16.416668	16.083334	3250
				Contraction		undesting			7	KOTESHWAR	6.999999	6.749997	1375
	1	TEISTAV	9,583333	9.583333	13,166667	1916.67	1917		8	NATHPA JHAKRI HEP	44.333336	44.500000	8883
	-	10071111							9	PONG HEP	43.916665	63.500001	10742
	2	RANGET	•	•	0	0	0		10	PARBATI-III	0.000000	0	0
									11	RAMPUR HEP	9.500002	9.249999	1875
									12	SEWA-II HEP	0.000000	0	0
1		A) FRAS settleme	nt account for the wee	k 26-Nov-18 to 02-Dec	18 has been prepared	l based on the CERC ord	ler in		13	TEHRIHEP	42.916667	42.500002	8542
			4/2018/Suo-Motu, date						Total				43124
		Bộ The incen∜ive h	as been calculated at t	he rate of 10 Paisa/Kw	n for mileage Energy.				Note: Abov	e calculations are based on the direction	s of Honble CERC in ord	er dated 16.07.2018 in Pe	tition No. 07/SM/2018

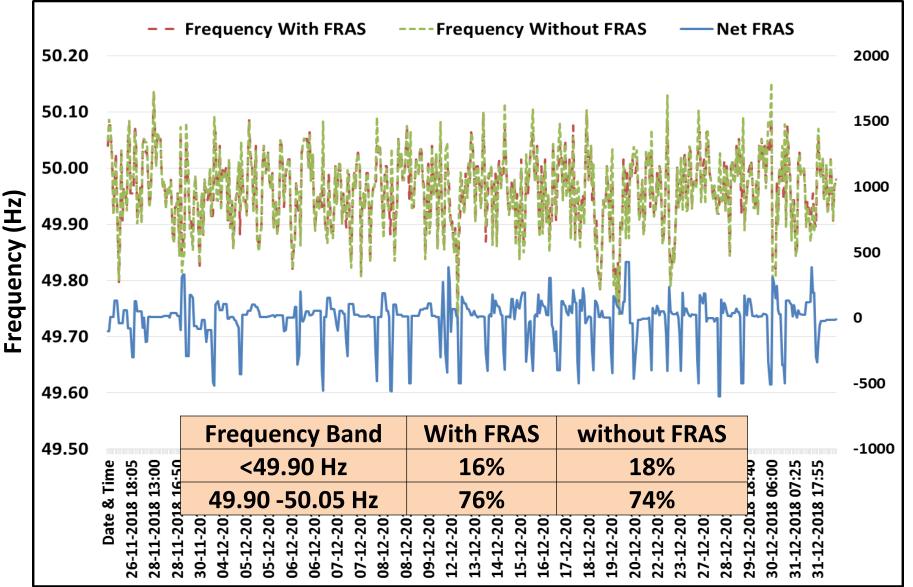
NERPC yet to release FRAS account

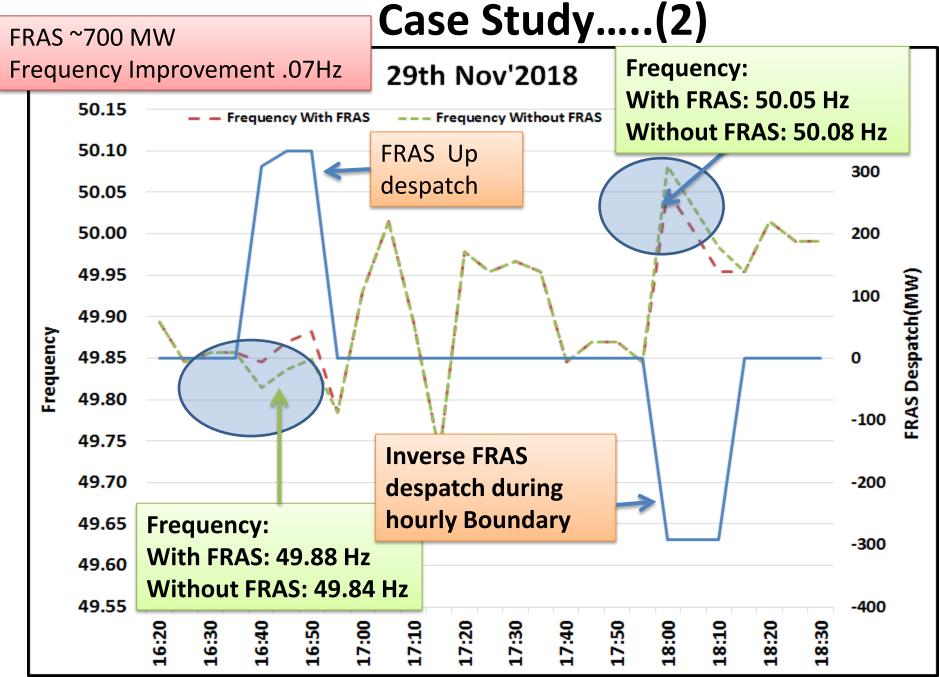

FRAS despatch

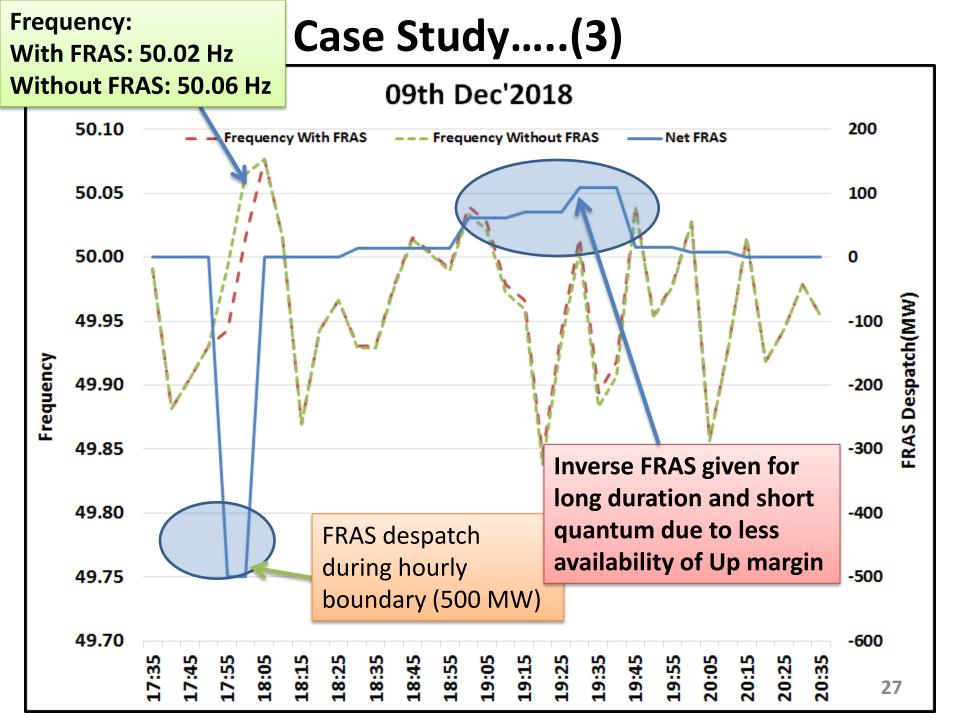

Incentive for FRAS


Plant wise Incentive for FRAS

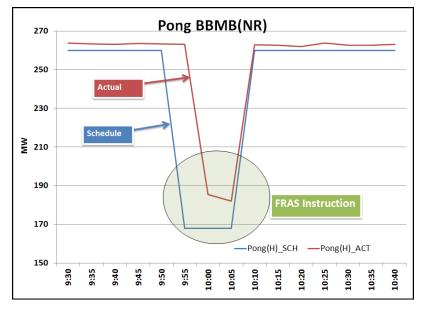
Daily energy left for square off

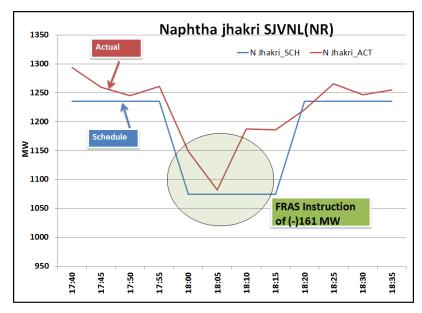


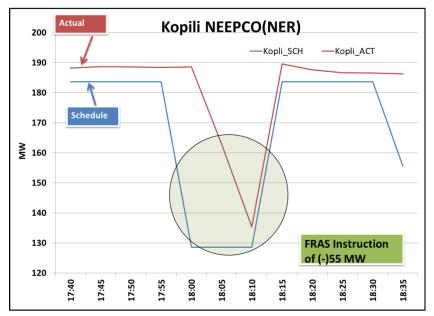

FRAS provider energy left for square off

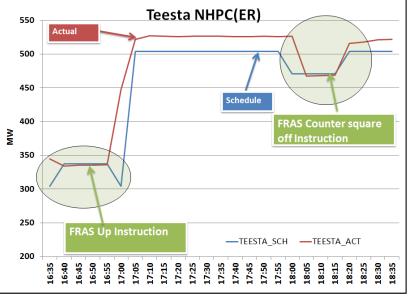


Left for Down : Counter instruction for decreasing the generation Left for Up : Counter instruction for increasing the generation

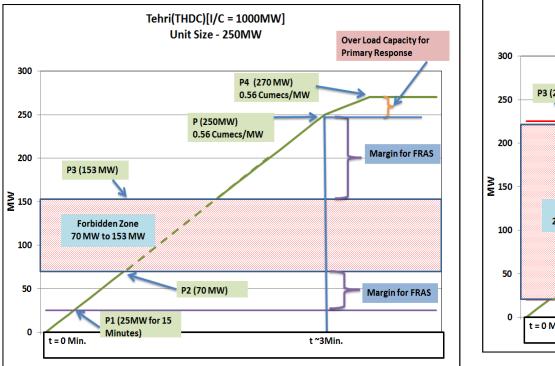

Case study..(1) FRAS Despatch from 26th Nov to 31st Dec'18

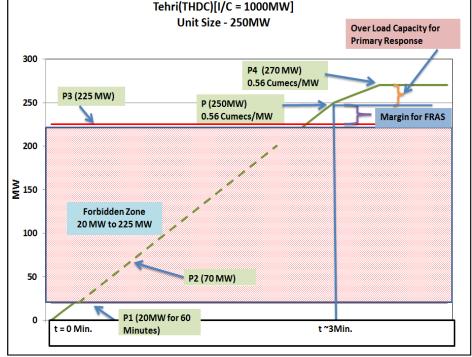






Sample Plant Response to FRAS





Variation in Plant Parameters

Data Submitted during FRAS Implementation stage

Revised Data Submitted

Draft CERC Terms and Conditions of Tariff) Regulations, 2019 "Norms of operation for hydro generating stations:

In case of storage and pondage type plants with head variation between full reservoir level and minimum draw down level is more than 8% and when plant availability is not affected by silt, the month wise peaking capability as provided by the project authorities in the DPR (approved by CEA or the State Government) shall form basis of fixation of NAPAF."

Key Learnings

- Introduction of fast tertiary response in India
- Layer of Centralized Fast Response Ancillary Despatch (from regional to national level) over Decentralized Layer of Scheduling Process
- First time 5-minute scheduling, despatch, accounting and settlement
- Customised FRAS software solution developed In-house.
- Optimization of Hydro generation
- Improved Handling of Frequency Spikes
- Benefits to stakeholders Hydro Generators & State Utilities
- Freedom and Choice available to states retained
- Cost of Implementation low
- All constraints honoured in FRAS despatch
- Information Dissemination
- Communication between FRAS Providers and NLDC

Challenges

- Lead Time for Communication of Instructions
- Dilemma of Reserves in Hydro plants
 - Need for Streamlining of Scheduling Process
 - Need for More Hydro machines on Bar
 - Need for 15-Minute block wise unit commitment by FRAS Provider schedule to the respective RLDCs.
- Non-squaring off
 - Minor variations in terms of schedule energy vis-a-vis the declared energy
 - Need for HEPs to provide 10-day assessment of energy to be generated based on the projected reservoir levels and water release/discharge requirements.
- Non-availability of FRAS at peak times
 - Scheduling of generation at the peak hours is at the maximum.
- Variation in Plant Parameters with variation in head leads to less flexibility
- Better Hydro generation forecasting
- Gate Closure for Scheduling Process
- Automation, IT Infrastructure and Manpower
- Metrics for Performance Monitoring 05 Minute Metering

Way Forward

- Unit commitment : More machines to be kept on bar.
- Treatment for residual small energy
 - Plant to be compensated with Energy charge.
 - Square of in D+1.
- Gate Closure for Scheduling Process.
- 5-minute hydro scheduling.
- Performance monitoring of Hydro station.
- Pilot to continue for say 6 months.
- Review of hydro station data submitted for better utilization of flexibility of station.

DISCUSSION